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Resumo

N os anos recentes, suavização de superfícies é um assunto de intensa
pesquisa em processamento geométrico. Muitas das abordagens para
suavização de malhas usam um esquema de duas etapas: filtragem de

normais seguido de um passo de atualização de vértices para corresponder com
as normais filtradas. Neste trabalho, propomos uma adaptação de tais esquemas
de duas etapas para superfícies representadas por nuvens de pontos. Para isso,
exploramos esquemas de pesos para filtrar as normais. Alem disso, investigamos
três métodos para estimar normais, analisando o impacto de cada método para
estimar normais em todo o processo de suavização da superfície. Para uma aná-
lise quantitativa, além da comparação visual convencional, avaliamos a eficácia
de diferentes opções de implementação usando duas medidas, comparando nos-
sos resultados com métodos de suavização de nuvens de pontos encontrados a
literatura.
Palavras-chave: suavização de superfícies; nuvens de pontos; estimativa de nor-

mais; filtragem de normais.





Abstract

I n the last years, surface denoising is a subject of intensive research in geome-
try processing. Most of the recent approaches for mesh denoising use a two-
step scheme: normal filtering followed by a point updating step to match

the corrected normals. In this work, we propose an adaptation of such two-step
approaches for point-based surfaces, exploring three different weight schemes
for filtering normals. Moreover, we also investigate three techniques for normal
estimation, analyzing the impact of each normal estimation method in the whole
point-set smoothing process. Towards a quantitative analysis, in addition to con-
ventional visual comparison, we evaluate the effectiveness of different choices of
implementation using two measures, comparing our results against state-of-art
point-based denoising techniques.

Keywords: surface smoothing; point-based surface; normal estimation; normal
filtering.
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Capítulo 1
Introdução

1.1 Contextualização	e	Motivação

O mundo ao nosso redor pode ser capturado e modelado por meio das superfí-
cies que percebemos. Na matemática, as superfícies e as suas propriedades têm
sido amplamente estudadas desde os séculos passados. Esses conceitos foram
estendidos e aplicados na área de modelagem e processamento geométrico para
muitas finalidades como por exemplo, suavização de superfícies.

O processamento geométrico é, principalmente, aplicar algoritmos a mode-
los geométricos, onde o algoritmo representa a ação e a geometria representa o
objeto (Mario Botsch, 2010). Para modelar objetos em três dimensões, muitas
pesquisas foram conduzidas, focadas em encontrar uma representação computa-
cional apropriada. Não existe uma representação que seja suficientemente boa
para todas as aplicações, pois aplicações distintas requerem representações dis-
tintas, visando por exemplo:

• Manipular objetos complexos a partir de objetos simples;

• Permitir editar um modelo para, por exemplo, animar algumas partes dele;

• Demandar um custo de memória ou tempo de processamento baixo.
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Capítulo 1 Introdução

Algumas abordagens utilizadas para representar as superfícies são: malhas de
polígonos, nuvens de pontos, splines hierárquicos e superfícies de subdivisão. A
representação mais comum de superfícies em computação gráfica é, provavel-
mente, malhas de polígonos. Uma malha de polígonos é essencialmente um con-
junto de vértices (pontos), arestas (conexão entre vértices) e faces (conjunto fe-
chado de arestas) que representam explicitamente a superfície. Na maioria das
vezes, as faces são representadas por triângulos, quadriláteros ou outros polígo-
nos simples, para simplificar os cálculos e a renderização. Devido a sua simpli-
cidade, as malhas podem ser processadas eficientemente em computadores mo-
dernos e placas gráficas. As vantagens são principalmente a facilidade para a
visualização, e também a informação de conectividade explicita.

As nuvens de pontos, a representação usada neste trabalho, são um tipo de
representação de superfícies conhecidas como superfícies não estruturadas. As
superfícies não estruturadas são as representações explícitas que não possuem
um modelo de dados associado que indique a conexão entre os elementos bási-
cos, que podem ser pontos ou polígonos. Quando o elemento básico é o ponto,
tem-se uma nuvem de pontos, a representação mais simples que existe. A nuvem
de pontos é um conjunto não ordenado de pontos (x, y, z em 3D) que approxima
a superfície. Esta representação foi inicialmente proposta em 1985 por (Levoy &
Whitted, 1985). Recentemente este tipo de representação tem experimentado
um ressurgimento devido, principalmente, à popularização dos scanners 3D. As
principais vantagens da representação por pontos são sua simplicidade e facili-
dade de renderização. As principais desvantagens são: não se tem informação da
conectividade, topologia ou quantidades diferenciais além da limitação da teoria
matemática para manipular tal representação.

As nuvens de pontos obtidas por scanners geralmente têm ruído, com maior con-
centração próximo das feições afiadas. Algoritmos de reconstrução de superfície
conseguem remover o ruído da superfície mas transformam a representação, por
exemplo, em malhas de polígonos. Quando se deseja trabalhar diretamente com
a nuvem de pontos, temos que aplicar um algoritmo de suavização para remover
o ruído. No trabalho realizado propomos um método de suavização de nuvens
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de pontos que preserve feições afiadas.

1.2 Objetivos

O objetivo deste trabalho foi investigar uma metodologia de duas etapas para
filtrar superfícies, no contexto de superfícies de pontos. As etapas desta meto-
dologia são filtragem de normais e atualização de pontos (vértices no contexto
caso de malhas). Enquanto normais em malhas são diretamente definidas por
cada face, em nuvens de pontos precisamos estimar as normais previamente. In-
vestigamos três métodos para estimar normais, três métodos para filtrar normais
e propomos um método para atualizar os pontos. O estudo apresentado permite
identificar o melhor conjunto de ferramentas, e como implementá-las em cada
passo do processo de suavização para obter um método robusto e efetivo para
suavizar nuvens de pontos a partir da filtragem de normais.

Em síntese, são objetivos específicos desse projeto:

• A investigação detalhada das alternativas para estender o esquema de sua-
vização de superfícies via filtragem de normais no contexto de nuvens de
pontos. Mais especificamente, investigar as possíveis implementações de
cada etapa do pipeline de suavização proposto e analisar a eficácia de cada
combinação.

• Desenvolver um método de atualização de pontos a partir de um campo de
normais filtradas de modo a preservar feições.

• Um conjunto abrangente de comparações com técnicas de suavização de
nuvens pontos.

• A definição de medidas quantitativas para analisar a eficácia das técnicas de
suavização, o que permite avaliar objetivamente a qualidade dos métodos
de suavização baseadas em nuvens pontos.

3
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1.3 Organização

Esta dissertação está organizada da seguinte maneira:

Capítulo2: os principais conceitos que têm orientado esta dissertação são
apresentados.

Capítulo 3: apresentamos uma revisão bibliografia sobre as técnicas de
suavização de superfícies representadas por nuvens de pontos.

Capítulo 4: apresentamos a metodologia proposta para remover ruído da
nuvem de pontos e as alternativas dos passos que compõem nosso pipeline:
estimação de normais, filtragem de normais e atualização de pontos.

Capítulo 5: as métricas propostas para comparar a eficácia dos métodos
para suavizar nuvens de pontos junto com um estudo comparativo entre o
esquema proposto e outras técnicas de suavização para nuvens pontos.

Capítulo 6: apresentamos as conclusões desse projeto de mestrado, res-
saltando as contribuições e limitações, além da discussão de trabalhos fu-
turos.

4



Capítulo 2
Marcos	Teóricos

2.1 Considerações	Iniciais

Neste capitulo apresentamos alguns dos principais conceitos que têm orientado
esta dissertação. Começamos descrevendo a representação de superfícies usando
nuvens de pontos, os principais algoritmos para estimar normais e as estruturas
de dados mais comuns para as armazenar. Continuamos introduzindo o tema de
filtragem bilateral muito utilizado em imagens e que serve como inspiração para
métodos de suavização de superfícies. Finalmente, apresentamos brevemente
métodos de suavização de malhas em dois passos que inspiraram nosso método
de suavização de nuvens de pontos.

2.2 Nuvens	de	Pontos

A representação mais simples de uma nuvem de pontos consiste somente das
coordenadas dos pontos:

P = {pi ∈ R3, i ∈ {1, . . . , n}}

Algoritmos específicos para diversos problemas no contexto de nuvens de pon-
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Capítulo 2 Marcos Teóricos

tos tem sido desenvolvidos. Alguns desses problemas são suavização de nuvens
de pontos, reconstrução de superfícies, estimação de normais, dizimação e amos-
tragem (Gross & Pfister, 2007).

Outra representação simples de nuvem de pontos considera, além das coorde-
nadas, a normal de cada ponto e é chamada de nuvem de pontos orientada:

P = {pi ∈ R3,ni ∈ R3, i ∈ {1, . . . , n}}

As normais podem ser estimadas utilizando algumas técnicas que geralmente
analisam a vizinhança de cada ponto. A seguir são descritas algumas técnicas de
estimação de normais.

2.2.1 Estimativa	de	Normais

A estimativa de normais em nuvens de pontos é um tópico bastante estudado na
área de processamento geométrico. Seja uma superfície M amostrada por uma
nuvem de pontos P . O problema de estimativa de normais visa ter uma normal
ni por cada pi, definida como um vetor perpendicular a um plano tangente à M
em pi. Cada normal ni tem origem no ponto pi associado e o campo de normais
é representado por N = {ni ∈ R3, ∥ni∥ = 1}.

As normais estimadas servem como entrada de alguns algoritmos para remoção
de ruído, reconstrução de superfícies ou detecção de feições afiadas. A qualidade
das normais estimadas depende de vários fatores, como feições afiadas na super-
fície, regularidade de amostragem e o nível de ruído na nuvem de pontos. Nem
todos os algoritmos existentes para estimar normais conseguem lidar com esses
fatores.

Uma das abordagens proposta por Hoppe et al. (1992), aproxima um plano local-
mente para cada ponto e sua vizinhança usando mínimos quadrados (Figura 2.1).
O plano n⊤x = c é encontrado minimizando o erro e(n, c) =

∑k
i=1(n⊤ · pi − c)2

com a restrição n⊤ · n = 1. Essa abordagem é equivalente a encontrar o plano
usando PCA na vizinhança de cada ponto (Secção §4.2.1). Assim, a normal para
cada ponto é a normal ao plano estimado para cada vizinhança. A vizinhança
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2.2 Nuvens de Pontos

pi

Figura 2.1: Aproximação de um plano à vizinhança do ponto pi

pode ser definida como os k vizinhos mais próximos ou como os pontos dentro
de um raio r ao redor do ponto. As normais obtidas desse processo não são ori-
entadas, demandando um pos-processamento para obter um campo de normais
orientadas de forma consistente.

Pauly et al. (2003b) observaram que os pontos mais próximos na vizinhança de
um ponto pi deveriam ter maior influencia na minimização do erro de aproxima-
ção do plano tangente. Por isso, adicionaram um peso ao erro:

e(n, c) =
k∑

i=1

(n⊤ · pi − c)2θ(∥pi − p∥),

onde θ é o peso Gaussiano: θ(t) = exp(−t2/h2), na qual h é um parâmetro
indicando o tamanho das feições da superfície.

Mitra & Nguyen (2003) investigaram uma forma de escolher o raio r da vizi-
nhança adaptativamente. Eles observaram que o mesmo r para todos os pontos
podia produzir resultados errados, devido a que em regiões com alta curvatura o
erro da minimização aumenta proporcionalmente de acordo ao r. Observaram
também, que a densidade da nuvem de pontos pode afetar o resultado. Assu-
mindo um modelo de ruído aleatório, com média igual a zero e desvio padrão σn,
propuseram um método analítico para delimitar o erro da normal como função
de r, utilizando uma estimação da curvatura local κ e da densidade local ρ para
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Capítulo 2 Marcos Teóricos

(a)

pi

A

(b)

Figura 2.2: Células voronoi para um conjunto de pontos (a) sem ruído e (b) com
ruído, onde A é o pólo da célula Voronoi do ponto pi

encontrar um r ótimo. O r ótimo pode ser encontrado com probabilidade 1−α:

r =

(
1

κ

(
c1

σn√
αρ

+ csσ
2
n

))
onde c1 e c2 são duas constantes.

Amenta & Bern (1998) usaram o diagrama Voronoi de P para obter uma esti-
mativa das normais. Assumindo que P tem alta densidade de pontos, a célula
de Voronoi para um ponto pi é alongada na direção perpendicular à superfície
(Figura 2.2). O vetor de um ponto ao pólo da sua célula de Voronoi é uma estima-
tiva da normal, sendo que o pólo da célula de Voronoi é o ponto mais distante ao
ponto que define a célula. Uma desvantagem deste método, além de ser custoso,
é que é muito sensível ao ruído (Figura 2.2b).

Li et al. (2010), assumindo uma distribuição Gaussiana do ruído, propuseram
um método de duas etapas para estimar normais. A primeira etapa é estimar a
escala de ruído: para cada ponto pi amostram T planos aleatoriamente (selecio-
nando tríades de pontos na vizinhança do ponto). Após, para cada plano calculam
a distância do plano aos pontos na vizinhança de pi. Baseado nessas distâncias,
calculam a escala do ruído. Posteriormente, na segunda etapa, utilizando a escala
do ruído, calculam um plano tangente a cada ponto baseado em um núcleo de
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2.2 Nuvens de Pontos

densidade. Esse método consegue bons resultados na presença de ruído e feições
afiadas. No entanto, a variação de densidades nas bordas afeta o desempenho do
kernel de densidade, favorecendo os lados com alta densidade.

Recentemente, Boulch & Marlet (2012) propuseram um método baseado na
transformada de Hough aleatória (RHT) (Borrmann et al., 2011). Eles utilizam
métodos estatísticos para encontrar o número mínimo de amostras de planos a
serem consideradas na vizinhança de cada ponto. Além disso, definiram uma
condição de parada que consegue acelerar o processo de amostragem. Esse mé-
todo consegue bons resultados em nuvens de pontos com densidade anisotrópica.
Descrevemos o método em maior detalhe na Secção §4.2.3.

2.2.2 Estruturas	de	Dados

As nuvens de pontos podem ser muito grandes, chegando a milhões de pontos.
Por tanto, é desejável dividir o conjunto de pontos em subconjuntos menores.

Dada a natureza não estruturada das nuvens de pontos, precisamos de uma
estrutura de dados para armazenar a nuvem de pontos. Além das coordenadas
dos pontos, as estruturas de dados, devem fornecer informação da vizinhança de
cada ponto. Lembramos que as vizinhanças podem ser definidas de acordo com
um raio r: Ni = {pj ∈ P , ∥pi−pj∥ < r}, ou podem também ser definidas como
os k pontos mais próximos de pi.

Uma estrutura de dados muito usada para manipular nuvens de pontos é a Oc-
tree. Proposta originalmente por (Meagher, 1982), é uma estrutura de dados es-
pacial hierárquica modelada como uma árvore. Ela engloba todos os pontos e
particiona a caixa envolvente em oito partes iguais. Cada parte que contenha
pontos é recursivamente dividida em oito partes. A recursão continua até atin-
gir um número mínimo de pontos num octante (Figura 2.3). Uma desvantagem
dessa estrutura de dados é que geralmente as nuvens de pontos não podem ser
divididas de forma uniforme, o que leva a uma estrutura de dados desequilibrada
e ineficiente.

Outra estrutura de dados usada para manipular os dados é a kd-Tree, proposta
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(a) Vista lateral do modelo (b) Vista frontal do modelo

Figura 2.3: Subdivisão do modelo Elephant usando uma Octree com no mínimo
vinte pontos por octante.

por Bentley (1975). A kd-Tree é uma árvore de busca de k dimensões. No caso
das nuvens de pontos, a árvore tem 3 dimensiones. Partindo da caixa envolvente
contendo todos os elementos, recursivamente divide-se as células em regiões com
igual número de elementos. A divisão é realizada usando um plano de corte per-
pendicular a algum eixo coordenado, dividindo a dimensão de maior extensão
espacial. Uma vantagem da kd-Tree é que consegue gerar uma árvore balanceada
de busca. Neste trabalho, usamos uma kd-Tree para armazenar os dados e para
fazer as consultas das vizinhanças.

Outra estrutura de dados espacial mais genérica é a hierarquia de volumes en-
volvente (BVH). Proposta por Klosowski et al. (1998), ela agrupa objetos geomé-
tricos considerando cada objeto como sendo um nó folha da árvore. Posterior-
mente, agrupa os nós usando alguma estratégia. Essa estratégia pode ser definida
de tal forma que o resultado seja a Octree ou a kd-Tree.
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Entrada
Espacial Rango

Multiplicação dos pesos espaciais e de rango

∗

Resultado

Figura 2.4: A filtragem bilateral consegue suavizar a imagem de entrada preser-
vando as feições (Resultado). Um peso ponderado da vizinhança subs-
titui cada pixel. O peso é composto por um peso espacial, que penaliza
a distância, e por um peso de rango, que penaliza a variação da inten-
sidade. Assim, somente pixeis próximos com intensidade semelhante
contribuem no resultado final. Os pesos mostrados são aplicados ao
pixel sob a seta. (Imagem adaptada de Kornprobst & Tumblin (2009))

2.3 Filtragem	Bilateral

A filtragem bilateral, originalmente proposta por Tomasi & Manduchi (1998), é
um método utilizado para suavizar imagens preservando feições. Esse método
baseia-se na filtragem Gaussiana, que substitui cada pixel por uma ponderação
dos vizinhos utilizando convolução:

pi =
∑
pj∈Ni

Gσ(∥xi − xj∥)Ij , (2.1)

onde ∥xi − xj∥ representa a distância dos pixeis, Ni é a vizinhança do pixel pi, Ij
é a intensidade da cor do pixel pj e Gσ é o kernel Gaussiano definido pela função:

Gσ(x) =
1

2πσ2
exp

(
− x2

2σ2

)
, (2.2)
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Capítulo 2 Marcos Teóricos

Note-se que a influência de cada pixel pj vizinho do pixel pi depende unica-
mente da distância espacial. A filtragem bilateral trata essa lacuna introduzindo
um termo que leva em conta a intensidade da cor. A ideia principal é que um pi-
xel com intensidade similar tenha mais influencia que um pixel com intensidade
distinta.

Tomasi & Manduchi (1998) definiram a filtragem bilateral:

pi =
1

Wpi

∑
pj∈Ni

Gσs(∥xi − xj∥)Gσr(|Ii − Ij|)Ij , (2.3)

onde Gσs é o peso espacial, que penaliza a distância entre os pixeis. O peso de
rango Gσr penaliza a variação na intensidade dos pixeis, representada por |Ii−Ij|.
Ambos os pesos, são definidos pela função Gaussiana da Equação (2.2). Final-
mente, Wpi é o fator de normalização que garante que a soma dos pesos seja 1.0:

Wpi =
∑
pj∈Ni

Gσs(∥xi − xj∥)Gσr(Ii − Ij) (2.4)

e os parâmetros σs e σr determinam o nivel de suavização da imagem. Na Fi-
gura 2.4, mostramos como os pesos são calculados para um pixel próximo a uma
borda.

A filtragem bilateral foi estendida para malhas simultaneamente por Jones et
al. (2003) e por Fleishman et al. (2003). Eles assumem que a malha é localmente
plana, ou seja existe um plano que aproxima localmente cada vértice junto com
sua vizinhança. Ambos os trabalhos (Fleishman et al., 2003; Jones et al., 2003)
definem o peso espacial como a distância entre os vértices da malha. Já o peso
de rango é definido de forma diferente em cada trabalho.

Idealmente, o vértice pi é igual à projeção dele no plano tangente definido pelo
vizinho qi, ou seja pi = πqi(pi). Por isso, Jones et al. (2003) definem o peso de
rango como sendo Gσr(∥pi − πqi(pi)∥), assim a influência de um vizinho qi cujo
plano tangente se encontre longe do ponto pi é minimizada. O filtro é definido
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como:

F (pi) =
1

Wpi

∑
qi∈Ni

aqiGσs(∥pi − qi∥)Gσr(∥pi − πqi(pi)∥), (2.5)

no qual aqi é a densidade de amotragem.
Outra forma de abordar o fato de que a malha é localmente plana é assumindo

que a projeção do vetor diferença entre qi e pi na normal do vértice pi deve ser
zero. Ou seja, pi + ((qi − pi) · ni)ni = pi. Isto resulta no filtro proposto por
Fleishman et al. (2003):

F (pi) =
1

Wpi

∑
qi∈Ni

aqiGσs(∥pi − qi∥)Gσr(|(qi −pi) ·ni|)((qi −pi) ·ni). (2.6)

Uma discussão sobre as principais diferenças e semelhanças destes dois filtros
pode ser encontrada em Kornprobst & Tumblin (2009). Sendo a diferença mais
importante que o filtro definido por Fleishman et al. (2003), ao contrário do filtro
de Jones et al. (2003), evita que os vértices se movam sobre o plano tangente, já
que o vértice pi é movido ao longo de sua normal ni.

2.4 Suavização	em	Dois	Passos	de	Malhas

Triangulares

As malhas triangulares são compostas de vértices (V ) e arestas (A) que formam
faces triangulares (F ). A suavização de malhas pode ser vista como o processo
de deslocar vértices afetados por ruído para uma posição mais próxima da sua
posição correta (sem ruído). A atualização dos vértices pode ser feita em um ou
dois passos. Os métodos que suavizam a malha em um passo utilizam as posições
dos vizinhos para atualizar a posição de cada vértice. Métodos que usam dois
passos ajustam primeiro as normais das faces e depois, atualizam os vértices para
corresponder com as normais ajustadas.
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3

i

Fig. 1. Face neighbourhoods. Faces labeled I belong to NFI(i); faces labeled
II belong to NFII(i) .

is the vertex coordinate set. We use | · | to denote the
cardinality of a set. A vertex, edge, or face is sometimes
loosely represented by its corresponding index, i.e. a number
i may be used to denote the ith vertex Vi, edge Ei, or face Fi,
where this is not ambiguous. The area of face Fi is denoted
by Ai; the normal of Fi is denoted by ni. ∂Fi denotes the set
of edges that constitute the boundary of face Fi.

In algorithms, various quantities are iteratively updated. We
use ′ to represent the updated value, relative to the current
value: e.g n′

i denotes the updated value of ni.
The 1-ring vertex neighbourhood of a vertex Vi, denoted

by NV (i), is the set of vertices that are connected to Vi by
an edge. The set of faces that share a common vertex Vi is
denoted by FV (i). The faces in the 1-ring face neighbourhood
of a face Fi can be divided into two types. The first type,
denoted by NFI(i), is the set of faces that have a common
vertex or edge with the face Fi. The second type, denoted
by NFII(i), is the set of faces that share an edge with the
face Fi. Fig. 1 shows the two types of face neighbourhoods.
Clearly, NFI(i) ⊃ NFII(i). To refer to the union of Fi and
its neighbourhood, we define N∗

FI(i) = NFI(i)
⋃
{Fi} and

N∗
FII(i) = NFII(i)

⋃
{Fi}.

IV. NORMAL FILTERING

This Section now considers how we filter normals in our
two-step approach; the next Section considers how we perform
vertex updating. In each case, we start by analysing existing
approaches, using the results to justify our approach.

A. Previous approaches to normal filtering

Several filtering techniques have been proposed to adjust
face normals. An indirect approach to normal filtering is given
by Jones et al. [12], where the face normals are updated
indirectly via vertex updating. A virtual vertex update is first
performed using weighted Gaussian filtering. The real vertex
positions remain unchanged, but the virtual vertex coordinates
are used to compute the new face normals. Although this ap-
proach to normal filtering removes noise, it does not consider
the requirement to preserve fine features.

Most other normal filtering approaches update the normals
directly from the original face normals. Yagou et al. [15],
[16] use mean, median, and alpha-trimming filters. Shen and
Barner [17] use a fuzzy vector median filter to compute the
new normals. We now consider the properties of these filters.

i i

(a) (b)
Fig. 2. Faces Fi is adjacent to (a) a ridge feature and (b) a corner feature.
Blue lines are ridge lines; the dotted green line is also a ridge line for a
different case. The areas between the ridge lines are approximately flat.

The mean filtering approach [15] computes the updated
normal of a face using area-weighted averaging of the normals
of its neighbours:

n′
i = normalise



 1∑
j∈NF I(i) Aj

∑

j∈NF I(i)

Ajnj



 , (1)

where normalise(·) scales a vector length to 1. Note that
the scaling coefficient 1/

∑
j∈NF I(i) Aj in the above formula

is actually unnecessary, and only adds computational cost
because of the subsequent normalisation. Surprisingly, several
other papers also needlessly use a scaling coefficient followed
by normalisation: e.g. see [17], [26].

Although mean filtering smooths face normals, it also has
the same limitation as Jones et al.’s [12] approach: it destroys
fine features of the mesh, and is not feature-preserving.

The median filtering approach [15] determines the updated
normal n′

i of a face Fi according to the angles ∠(ni,nj)
between the normals of face Fi and its neighbouring faces
Fj , j ∈ NFI(i):

n′
i = arg mediannj {wj # ∠(ni,nj) : j ∈ NFI(i)} , (2)

where wj # ∠(ni,nj) means that wj copies of ∠(ni,nj)
should be included when performing the median operation.
Different choices may be used for wj . A simple choice is to
set all wj = 1, i.e. to use an unweighted median. Another
choice proposed in [15] is to set wj = 2 when Fj ∈ NFII

and wj = 1 when Fj ∈ (NFI \ NFII) (weights are shown in
Fig. (2)). Yagou et al. [15] claim that this weighted median
filter better preserves features than the unweighted one.

Such median filters preserve ridge and even corner features
when there is little or no noise on the mesh. However, when
there is a high level of noise, the median filter may yield poor
results, as we now explain.

First, consider the surfaces shown in Figs. 2(a) and 2(b)
separated by the blue ridge lines (ignore the dotted green line).
When there is little or no noise, Eqn. (2) selects as median
normal the normal of a face sharing the same flat area as Fi,
leading to an updated normal for Fi with little error. However,
if the noise level is high, the median normal may come from
a different flat area to Fi, and the updated normal of Fi will
then have a large error.

Next, consider a corner also including an additional ridge
line, shown as a dotted green line in Fig. 2(b). It is clear that
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Figura 2.5: Tipos de vizinhança da face Fi: (I) conjunto de faces que compartem
um vertice com a face Fi e (II) conjunto de faces que compartilham
uma aresta com a face Fi (Sun et al., 2007)

No contexto de malhas, a vizinhança 1-anel de um vértice Vi, denotado NVi
,

é o conjunto de vértices conectados com Vi por uma aresta. E a vizinhança 1-
anel da face Fi pode ser definida de duas formas: como o conjunto de faces que
compartilham um vertice com a face Fi, denotado NIi , ou como o conjunto de
faces que compartilham uma aresta com a face Fi, denotado NIIi(Figura 2.5). O
conjunto de faces que compartilham um mesmo vértice Vi é denotado FVi

. E o
conjunto de arestas de uma face é denotado ∂F .

As normais em malhas triangulares são estimadas para cada face como o pro-
duto vetorial normalizado de duas arestas. A normal da face Ff é:

nf =
(xi − xj)× (xk − xj)

∥(xi − xj)× (xk − xj)∥
, (2.7)

onde xi,xj e xk são os vértices da face Ff .
A seguir descrevemos os passos envolvidos na suavização em dois passos para

malhas triangulares.

2.4.1 Atualização	das	Normais

Existem vários métodos para atualizar as normais. A maioria deles realizam um
processo iterativo, sendo nl

i a normal na iteração l, com n0
i a normal estimada

como visto na Equação (2.7). Sumarizamos a seguir os principais métodos en-
contrados na literatura. Uma discussão mais profunda dos métodos pode ser
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encontrada em Sun et al. (2007).

Um dos métodos, proposto por Yagou et al. (2002), calcula a nova normal se-
gundo um peso dado pela média da área das faces:

nl
i =

1∑
j∈NIi

Aj

∑
j∈NIi

Ajnl−1
j (2.8)

onde Aj é a área da face j, e nj é a normal da face j.

Outra abordagem, proposta também por Yagou et al. (2002), atualiza a normal
da face Fi tomando a mediana dos ângulos entre a normal da face Fi e as normais
das faces vizinhas:

nl
i = arg médian

nl−1
j

{wj ⊙ ∠(nl−1
i ,nl−1

j ) : j ∈ NI i} (2.9)

onde wj ⊙∠(nl−1
i ,nl−1

j ), indica que o ángulo no cálculo da médiana se repete wj

vezes, e arg médiannl−1
j

{·} é a normalnl−1
j para a qual obteve-se o ángulo médiano.

Uma estrategia que pode ser usada no cálculo do peso é atribuir peso 1 a todos os
ângulos. Outra estrategia é atribuir peso 2 aos ângulos ∠(nl−1

i ,nl−1
j ) : j ∈ NIIi e

peso 1 aos demais ângulos de NIi .

Outra técnica de atualização de normais, proposta por Yagou et al. (2003), é
alpha-trimming:

nl
i = normalise

 ∑
j∈NIi

Iα(j)Ajnl−1
j

 (2.10)

onde Iα(j) é um indicador igual a zero quando o ângulo ∠(nl−1
i ,nl−1

j ) encontra-
se na proporção α superior ou inferior de todos os ângulos em ∠(nl−1

i ,nl−1
j ) e

normalise(x) é o processo de normalizar x:

normalise(x) = x
∥x∥ (2.11)
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Sun et al. (2007) propõem um método baseado em um limiar:

nl
i = normalise

 ∑
j∈NIi

hjnl−1
j

 (2.12)

onde hj é uma função de pesos definida como:

hj =

(nl−1
i · nl−1

j − T )2 se nl−1
i · nl−1

j > T

0 se nl−1
i · nl−1

j ≤ T
(2.13)

onde 0 ≤ T ≤ 1 é um limiar proposto pelo usuário.

Zheng et al. (2011) apresenta um método baseado na filtragem bilateral para
definir o peso das normais na vizinhança NIi de Fi:

nl
i = normalise

 ∑
j∈NIi

Wc(∥cl−1
i − cl−1

j ∥)Ws(∥nl−1
i − nl−1

j ∥)nl−1
j

 (2.14)

onde ci é o centroide da face Fi, Wc e Ws são funções Gaussianas, Wc é o peso
espacial que penaliza a distância entre os centroides e Ws é o peso do ángulo que
penaliza a distância das normais das faces vizinhas.

Wang et al. (2012) propõem um método que combina um filtro bilateral com
um limiar calculado adaptativamente:

nl
i = normalise

 ∑
j∈NIi

Wc(∥cl−1
i − cl−1

j ∥)Ws(nl−1
i ,nl−1

j )nl−1
j

 (2.15)

onde Wc é uma função Gaussiana e Ws(ni,nj) é:

Ws(ni,nj) =

0 se (ni − nj) · ni ≥ T

[(ni − nj) · ni − T ]2, caso contrário
(2.16)
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e T é um limiar calculado adaptativamente:

T =

√∑
j∈NIi

[(ni − nj) · ni]

∥NIi∥
(2.17)

2.4.2 Atualização	dos	Vértices

Algoritmos para atualizar os vértices de modo a corresponder com as normais
corrigidas, tem sido propostos. Taubin (2001) propôs um sistema de equações
simultâneas baseado na ortogonalidade entre a normal e as arestas de cada face
f da malha triangular:


nf · (xi − xj) = 0

nf · (xk − xj) = 0

nf · (xi − xk) = 0

∀f = (i, j, k) (2.18)

Taubin (2001) mostrou que o sistema de equações não tem solução trivial, e
propôs resolver as equações no sentido dos mínimos quadrados, minimizando o
erro:

e(X) =
∑
k∈F

∑
(i,j)∈∂Fk

(nk · (xi − xj))
2 (2.19)

O método do gradiente pode ser utilizado para minimizar o erro, assim, a atu-
alização dos vértices é definida:

xl
i = xi + λ

∑
j∈Nvi

∑
(i,j)∈∂Fk

nl−1
k (nl−1

k · (xl−1
j − xl−1

i )) (2.20)

onde λ > 0 é o tamanho do passo na iteração.

Ohtake et al. (2001) propuseram utilizar o método do gradiente para minimizar
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o erro levando em conta a área de cada face:

e1(X) =
∑
k∈F

∑
(i,j)∈∂Fk

Ak(nk · (xi − xj))
2 (2.21)

com passo λ = 1/6
∑

k∈∂Fk
Ak

Assim, a equação de atualização dos vértices é:

xl = xl−1 +
1

3
∑

k∈FVi
Ak

∑
j∈NVi

∑
(i,j)∈∂Fk

Aknk(nk · (xl−1
j − xl−1

i )) (2.22)

Sun et al. (2007), observaram que numa face com área grande geralmente os
vértices encontram-se afastados, então, a influência da face na atualização do
vértice deve ser menor. Por isso, propuseram uma modificação do algoritmo de
Ohtake et al. (2001), substituindo os pesos dados pelas áreas das faces por um:

xl = xl−1 +
1

3
∑

k∈FVi

∑
j∈NVi

∑
(i,j)∈∂Fk

nk(nk · (xl−1
j − xl−1

i )) (2.23)
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Capítulo 3
Suavização	de	Superfícies

Representadas	por	Nuvens	de	Pontos

3.1 Considerações	Iniciais

Muitos métodos tem sido propostos para suavizar superfícies tanto para malhas
quanto para nuvens de pontos. Apesar disso, a pesquisa nesta área continua ativa
pois suavizar superfícies mantendo as feições (curvas nas superfícies que contém
as características visuais mais proeminentes) é ainda um problema sem solução
definitiva.

O objetivo da suavização de superfícies é remover ruído, mantendo as feições
subjacentes, tanto quanto possível. Muitos métodos desenvolvidos para malhas
de triângulos inspiraram variantes no contexto de superfícies representadas por
nuvens de pontos, que é o foco principal do trabalho aqui desenvolvido. Espe-
cificamente, no contexto de superfícies representadas por nuvens de pontos, as
técnicas de suavização tem experimentado um progresso importante na última
década. As técnicas existentes, variam consideravelmente quanto à base mate-
mática, abrangendo metodologias derivadas da teoria espectral, mapa de difusão,
operadores de projeção e filtros bilaterais.

Neste capítulo apresentamos as principais técnicas para suavização de superfí-
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Capítulo 3 Suavização de Superfícies Representadas por Nuvens de Pontos

cies representadas por nuvens de pontos encontradas na literatura.

3.2 Técnicas	Espectrais

Técnicas baseadas em filtros espectrais para imagens inspiraram variantes no con-
texto de superfícies definidas por nuvens de pontos. Assim, foram propostas va-
riações de técnicas existentes, impulsadas principalmente pelo desenvolvimento
de métodos robustos para discretizar o operador Laplace-Beltrami em nuvens de
pontos.

Pauly et al. (2002) foram uns dos pioneiros em utilizar os operadores de Laplace
para realizar suavização de nuvens de pontos, manipulando coeficientes espec-
trais e realizando um processo de difusão. O processo de difusão de Pauly et al.
pode ser descrito como:

∂S
∂t

= λ∆S , (3.1)

onde ∆ denota o operador Laplace-Beltrami na superfície. Usando integração
Euleriana, chegamos na suavização:

pl
i = pl−1

i + λdt∆pi , (3.2)

onde ∆pi é alguma discretização do operador Laplace-Beltrami no ponto pi.
A abordagem usada por Pauly et al. (2002) cria uma descomposição da nuvem

de pontos usando o operador umbrella como mecanismo de discretização:

∆pi =
1

Ω

∑
j∈N

wj(pj − pi) , (3.3)

onde wj define o peso do ponto pj na vizinhança de pi. Se o peso é um, o opera-
dor é conhecido como umbrella uniforme. O peso também pode ser definido em
relação a distância do ponto pi ao vizinho pj : wj = 1/∥pj − pi∥. Ω é o termo de
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3.2 Técnicas Espectrais

10 F. Petronetto et al. / Mesh-free Laplace–Beltrami

original model

low pass !lter

Figure 12: Low-pass filtering of the Armadillo model sampled with 22k points. From left to right: original model, smoothed
reconstruction with 1000, 100 and 10 eigenvectors.

(a) (b)

Figure 13: Deformations carried out taking as basis the pro-
posed discrete LB operator: (a) outward deformation in Max
Planck model with 12k sampling points and (b) inward de-
formation in camel model with 10k sampling points. The col-
ormaps represent the point displacement constraints (top)
and the magnitude of the deformation (bottom).

shown in Section 4 have been obtained with h as follows

h =
1
n

n

Â
i=1

max
j2Ni

{kxi �x jk} ,

where Ni is made up of the 100 nearest neighbors of xi.
On average, this value of h provides just one-third of the
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Figure 14: Approximating a catenoid minimal surface
(bottom-right) starting from a cylinder (top-left). The area
of the discrete surface (blue) converges to the area of the
catenoid (red).

number of samples used by PCL algorithm to build the
neighborhood of each sample. Since the spectrum is less sen-
sitive to h, good results can be reached by using #Ni = 50.

Moreover, we can define constant area elements by taking
the average of the solution of the linear system (6) without
performing the COAE algorithm. Although accuracy is af-
fected when area elements are evenly distributed among the
sample points, the overall behavior of the operator is pre-
served, mainly when the density of samples does not change
considerably on the surface. The middle image in Figure 15
shows the solution of DM f = 0, with constraints f = 1 and
f = 0 imposed at the bottom part of the arms of the Bimba
model.

Notice that the solution behaves exactly as expected, with
values varying smoothly from one side to the other of the
model. The same is true for eigenvectors, as depicted in the

submitted to EUROGRAPHICS Workshop on ... (200x)

Figura 3.1: Suavização do modelo Armadillo utilizando um filtro passa baixo
na decomposição espectral do operador Laplace-Beltrami basedo em
SPH. O processo não consegue preservar feições (extraído de Petro-
netto et al. (2013)).

normalização:

Ω =
1∑

j∈N wj

(3.4)

Um problema conhecido da discretização umbrella do operador Laplace-Beltrami
é o encolhimento do modelo, ou seja, a perda de volume. Algumas técnicas fo-
ram propostas para resolver esse problema, Desbrun et al. (1999) calculam o fator
de encolhimento e redimensionam a superfície após cada iteração. Pauly et al.
(2002) calculam o fator de encolhimento localmente e deslocam os pontos para
compensar a perda de volume.

Lange & Polthier (2005) utilizaram uma versão anisotrópica do operador La-
place para detectar a curvatura média. Seu método soluciona uma equação de de-
rivadas parciais (EDP) com condições de borda. A abordagem consegue suavizar
uma nuvem de pontos além de preservar e realçar feições durante o processo de
suavização. Uma desvantagem desse método é que precisa de muitas iterações e
de um parâmetro definido pelo usuário conhecido como quociente de borda que
permite realçar as regiões com alta curvatura.
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Capítulo 3 Suavização de Superfícies Representadas por Nuvens de Pontos

Belkin et al. (2009) propuseram uma discretização do operador Laplace-Beltrami
para nuvens de pontos. Para isso, construíram um patch ao redor de cada ponto
usando uma triangulação Delaunay local, empregando um kernel de calor em cada
patch. Provaram a convergência do operador Laplace-Beltrami proposto. Uma li-
mitação desse método é que precisa de uma densidade alta na nuvem de pontos.
Além disso, a construção local de uma triangulação aumenta a complexidade do
processo.

Recentemente, Petronetto et al. (2013) exploraram as propriedades espectrais
da discretização do operador Laplace-Beltrami baseado em SPH. A vantagem
desse método é que não precisa de uma malha nem localmente, diferindo de mé-
todos propostos anteriormente. Petronetto et al. conseguiram suavizar nuvens
de pontos utilizando a decomposição espectral do operador, mas, sem preserva-
ção de feições (Figura 3.1).

3.3 Técnicas	de	Projeção

As técnicas de projeção estão inspiradas no método de aproximação Moving Least
Squares (MLS), que está baseado no método de mínimos quadrados (LS). O mé-
todo LS para superfícies de pontos busca encontrar uma função linear f(xi) =

c0 + c1x que aproxime a superfície. Para isso, busca encontrar os coeficientes
c0, c1 que minimizem a soma dos quadrados das diferenças entre os valores da
função e dos dados originais:

minc0,c1

(∑
(pi − f(xi))

2
)
, (3.5)

onde pi são os dados originais da nuvem de pontos.
Enquanto o método de mínimos quadrados resulta numa solução global, Mo-

ving Least Squares (MLS) aproxima os dados localmente. O método MLS foi pro-
posto originalmente por Levin (1998) e surgiram muitas variações que podem ser
classificadas em superfícies implícitas e superfícies de projeções.

Proposto inicialmente por Alexa et al. (2003), os operadores de projeção con-
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r

(a)
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g
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Figura 3.2: Processo de projeção do MLS. (a) Primeiro, um plano H é aproximado
ao conjunto de pontos usando mínimos quadrados. (b) A projeção do
ponto r no plano H define a origem q do domínio local de referencia.
Utilizando esse domínio, um polinômio g é aproximado, novamente
usando mínimos quadrados. (c) Finalmente, o ponto é projetado no
polinômio g.

seguem suavizar as nuvens de pontos. A ideia principal é definir um esquema
de projeção de forma que um ponto próximo à nuvem de pontos seja projetado
em uma representação suave da superfície. Tipicamente, o esquema de projeção
pode ser dividido em dois passos: encontrar um plano e depois aproximar um
polinômio (Figura 3.2).

No primeiro passo, calcula-se um plano H = {x | (n · x) − D = 0,x ∈ R3},
com origem em D e normal n ∈ R3, ∥n∥ = 1, associada ao ponto r ∈ R3. H é
calculado minimizando a soma ponderada do quadrado das distâncias dos pontos
pi ao plano. Os pesos pertencentes a pi são funções da distância de pi à projeção
de r no hiperplano H :

n∑
i=1

((n · pi)−D)2w(∥pi − q∥) , (3.6)

onde q a projeção de r em H e w é uma função monotonicamente decrescente.
O sistema local de coordenadas definido por H é usado para calcular uma apro-
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ximação polinomial local da superfície na vizinhança de r. Os coeficientes são
calculados minimizando:

n∑
i=1

(g(xi, yi)− fi)
2w(∥pi − qi∥) , (3.7)

onde (xi, yi) é a representação de qi no sistema local de coordenadas, qi é a pro-
jeção de pi em H e fi é a altura de pi sobre H .

Diferentes enfoques foram propostos para controlar cada passo. Guennebaud
& Gross (2007) propuseram usar ajustes não polinomiais no segundo passo do
esquema. Para isso, eles propuseram uma abordagem algébrica para ajustar uma
esfera em vez do plano H . A solução algebrica para encontrar o vetor de coefici-
entes u(r) = [u0, . . . , u4] ∈ R5 que definem a 0-isosuperfície de uma esfera para
um ponto r ∈ R3 pode ser expressa como:

u(r) = arg min
u,u ̸=0

∥∥W1/2(r)Du
∥∥2

, (3.8)

onde W é a matriz diagonal de pesos n× n e D é a matriz n× 5 definida:

D =


1 p⊤

0 p⊤
0 p0

... ... ...
a p⊤

n−1 p⊤
n−1pn−1

 . (3.9)

Para evitar a solução trivial u = 0, usaram a restrição de Pratt que fixa a norma
do gradiente na superfície da esfera unitária como sendo um.

Pela natureza de suavização do MLS, as técnicas descritas anteriormente não
conseguem solucionar o problema de manter as feições afiadas. Porém, as super-
fícies podem ser vistas como compostas de patches separados por feições. Por-
tanto, pontos pertencentes a outros patches podem ser considerados outliers. Com
essa ideia, Fleishman et al. (2005) propuseram uma técnica baseadas em estatís-
tica robusta que consegue lidar tanto com feições afiadas quanto com outliers
reais. Uma desvantagem desse método, além do custo computacional, é que ele
requer uma alta densidade de pontos na nuvem. Por outro lado, considerar as fei-
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3.4 Técnicas Baseadas na Norma l1

ções afiadas como outliers não permite um modelo estatístico específico para mo-
delar as feições. Daniels et al. (2007); Lipman et al. (2007a) conseguiram modelar
as feições afiadas com maior flexibilidade, porém no contexto de reconstrução de
superfícies e não para suavização.

Öztireli et al. (2009), baseados em técnicas de estatística robusta, conseguiram
suavizar as nuvens mantendo as feições sem necessidade de uma segmentação
previa. Especificamente, mostraram a relação entre MLS e regressão local via
kernel (LKR) .

3.4 Técnicas	Baseadas	na	Norma l1

A origem dos métodos baseados na norma l1 é o algoritmo de Weiszfeld para a
solução do problema de localização de pontos de Fermat-Weber. O problema,
também conhecido como a mediana multivariada l1, é utilizada em dados mul-
tivariados para gerar uma representação de grandes conjuntos de amostras na
presença de ruído e outliers. O problema foi inicialmente conhecido como o pro-
blema de Weber & Friedrich (1962) e o objetivo era encontrar uma localização
ótima para um local industrial minimizando a soma das distâncias a locais exis-
tentes. O problema foi depois rastreado ao trabalho de Fermat no século XVII
e assim foi conhecido como o problema de Fermat-Weber.

Dado um conjunto de dados, a mediana l1 é definida como o ponto q que mi-
nimiza a soma das distâncias Euclidianas aos pontos:

q = arg min
x

{
n∑

i=1

∥pi − x∥
}

, (3.10)

onde pi são os dados originais da nuvem de pontos e xi é um conjunto arbitrário
de pontos.

Lipman et al. (2007b) desenvolveram um operador de projeção livre de para-
metrizações localmente ótimo (LOP) que está relacionado com a mediana l1. O
objetivo é encontrar um conjunto de pontos Q = {qj} que aproximem a geome-
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tria subjacente da nuvem de pontos P :

Q = G(Q) , (3.11)

onde:

G(C) = arg min
x∈{xj}

{E1(X,P,C) + E2(X,C)},

E1(X,P,C) =
m∑
j=1

n∑
i=1

∥xj − pi∥θ(∥cj − pi∥),

E2(X,C) =
m∑
j=1

λj

n∑
i=1,i ̸=j

η(∥xl
j − cj∥)θ(∥clj − cj∥) ,

(3.12)

onde θ e η são funções decrescentes:

θ(r) = e−r/(h/4)2 , η(r) =
1

3r3
, (3.13)

onde h é o raio de suporte definido pelo usuário.

Na Equação (3.12), E1 minimiza a soma ponderada das distâncias dos pontos qj

aos pontos pi em relação aos pesos radiais com centro no conjunto de pontos Q.
E1 pode ser vista como uma versão local da função de custo 3.10. E2 busca que
os pontos qj não estejam muito próximos entre si.

Finalmente, dado um parâmetro de repulsão µ ∈ [0, 1/2), definem um processo
iterativo para atualizar as posições de cada ponto:

xl
j′ =

n∑
i=1

pi
αj′

i∑n
i=1 α

j′

i

+ µ

m∑
j′=1,j′ ̸=j

(
xj′

l−1 − xl−1
j

) βj′

j∑m
j′=1,j′ ̸=j β

j′

j

, (3.14)
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B. Liao et al. / Computer-Aided Design 45 (2013) 861–874 863

a b c d

e f g h

Fig. 2. FLOP provides a more concise representation that captures well the input data. (a) Raw scanned data. (b–d) Reconstruction results by LOP, WLOP, and FLOP,
respectively, where only 1/2 of the original point number is used. (e–g) Reconstruction results by LOP, WLOP, and FLOP, respectively, using 1/4 of the input points. (h)
Reconstruction results using FLOP with 1/8 of the input points.

always guarantee finding a good solution. Mitra et al. [25] present
an approach for registration of point clouds ofmoving and deform-
ing objects. Without computing correspondence, this method ex-
ploits the underlying temporal coherence in the data and directly
computes object motion from the raw scanner for geometry regis-
tration.

A shorter version of this paper appeared in [26].

3. Fast feature-preserving LOP

In this section, we first briefly review the original method of lo-
cal optimal projection (LOP) [7]. A bilateral weighted LOP, which
we call FLOP, is then presented for feature-preserving geometry
reconstruction. Finally we introduce an acceleration technique for
FLOP, which benefits from the random sampling of the Kernel Den-
sity Estimate.

3.1. Review of Local Optimal Projection

The Local Optimal Projection (LOP) proposed by Lipman et al. [7]
is a parameterization free algorithm for geometry reconstruction.
Given the point set data P = {pj}j2J ⇢ R3, LOP projects an arbitrary
point-set X (0) = {x(0)

i }i2I ⇢ R3 onto the set P , where I, J denote
the indices sets. The desired set of projected points, denoted as
Q = {qi}i2I , is defined as the fixed point solution of the equation
Q = G(Q ). Here
G(C) = arg min

X={xi}i2I
{E1 (X, P, C) + E2 (X, C)} , (1)

with

E1 (X, P, C) =
X

i2I

X

j2J

kxi � pjk✓
�kci � pjk

�
,

E2 (X, C) =
X

i02I

�i0
X

i2I\{i0}
⌘('i0 i)✓ ( i0 i) ,

where 'i0 i = kxi0 � cik and  i0 i = kci0 � cik. The function ✓(r)
is a fast-decreasing smooth weight function, with compact sup-
port radius h defining the size of the influence radius (e.g., ✓(r) =
e�r2/(h/4)2 ). The term E1 drives the projected points Q to approx-
imate the geometry of P , which is also called multivariate L1 me-
dian [19]. The term E2 is a repulsion term, preventing xi0 from get-
ting too close to other points, where the repulsion function ⌘(r) =
1/(3r3) in [7] and ⌘(r) = �r in [13]. {�i}i2I are balancing terms
between the two cost functions.

3.2. Feature-preserving LOP (FLOP)

Although LOP is an effective approach to reconstruct complex
geometry, this method has the following drawbacks. First, when
processing complex point set data with sharp features, the geom-
etry features may not be preserved well, as illustrated in Figs. 1
and 2. Second, h is an important parameter which plays a major
role in the application of LOP, but it has to be manually adjusted
by trial and error to achieve satisfied results. Third, since the com-
putational complexity of this method is superlinear in the number

Figura 3.3: Comparação das técnicas baseadas na norma l1. De esquerda a direita:
nuvem de entrada, resultados de LOP, WLOP e FLOP (extraído de
Liao et al. (2013)).

onde αj′

i e βj′

j são respectivamente:

αj′

i =
θ(∥xl−1

j′ − pi∥)
∥xl−1

j′ − pi∥
,

βj′

j =
θ(∥xl−1

j′ − xl−1
j′ ∥)

∥xl−1
j′ − xl−1

j′ ∥

∣∣∣∣∂η∂r (∥xl−1
j′ − xl−1

j ∥)
∣∣∣∣ .

(3.15)

Huang et al. (2009) propuseram uma otimização ponderada localmente ótima
(WLOP). Observaram que para nuvens não uniformes, LOP tende a gerar proje-
ções com acumulação de pontos onde a nuvem original é mais densa. Para solu-
cionar esse problema, modificaram o processo iterativo para atualizar os pontos
proposto por Lipman et al. (2007b) (3.14):

xj =
n∑

i=1

pi
αj′

i /vj∑n
i=1(α

j′

i /vj)
+µ

m∑
j′=1,j′ ̸=j

(xj′
l−1−xl−1

j )
wl−1

i′ βj′

j∑m
j′=1,j′ ̸=j(w

l−1
i′ , βj′

j )
, (3.16)
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onde vi, wl
j são os pesos de densidade:

vi = 1 +
n∑

i′=1,i′ ̸=i

θ∥pi − pi′∥

wl
j = 1 +

m∑
j′=1,j′ ̸=j

θ(∥xj′
l−1 − xl−1

j ∥)
(3.17)

Além disso, propuseram mudar o termo de repulsão (3.13), de modo a produzir
uma distribuição mais regular:

η(r) = −r. (3.18)

Liao et al. (2013) observaram que ambos os métodos, LOP e WLOP, além de ser
computacionalmente complexos, não conseguem preservar feições afiadas (Fi-
gura 3.3). Inspirados nos filtros bilaterais, propuseram uma projeção localmente
ótima que consiga preservar feições (FLOP). Para isso, mudaram E1 utilizado em
LOP (3.12):

E1(X,P,C) =
m∑
j=1

n∑
i=1

∥xj − pi∥θs(∥cj − pi∥)θr(nj · (cj − pi)) , (3.19)

onde o peso θr(r) = e−r2/2σ2
r penaliza a variação na geometria, conseguindo pre-

servar feições afiadas.
Outra desvantagem de LOP e WLOP, é que o raio de suporte h tem que ser

fornecido pelo usuário por tentativa e erro. Por isso, Liao et al. (2013) propuseram
um raio de suporte localmente adaptativo:

hj =

∑n
i=1 θc(nj · (cj − pi))θs(∥cj − pi∥)

Si

R , (3.20)

onde θc(r) = e−r2/2σ2
r e θs(r) = e−r2/2σ2

r , são as Gaussianas padrão. A constante
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U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

Figure 8: Top row: initial surfaces. Bottom row: surfaces
faired via diffusion

using the Kd and/or Bd trees provided by the ANN pack-
age [Mou], also used by the PointShop point rendering sys-
tem [ZPKG02]. However, ANN’s standard Kd and Bd tree
implementations treat the (usually very numerous) points in
the point cloud independently: searching the neighbors of
every point implies, in a worst case, a full leaf-to-root search
tree traversal. In many point sets, the points are not com-
pletely randomly distributed. Points geometrically close to
each other come close to each other in the point vector too.
We use this to accelerate the neighbor search, as follows. We
do not try to return the exact k closest points, but k points
contained within a small given radius ε from a given point.
These points are kept in a cache. If the cache is empty, we
fill it by executing the standard k closest neighbor search. If
the cache is not empty, it contains search results for the pre-
vious point, so we retain those k′points closer than ε from
the current point. The cache miss, i.e. the remaining, usually
few, k− k′ points are found by the usual tree search. This
acceleration pays off as function of k. Indeed, as k increases,
neighborhoods of close points will largely overlap. For k
equal to 20, 50, and 100 closest points, we got a speedup fac-
tor of 2.62, 3.92, respectively 5.46 as compared to the stan-
dard tree search. This speedup was consistently observed for
point sets between 100000 and one milion points. On our
Pentium IV 1.8 GHz machine, for the point set and four k-
closest-points values in Fig. 2, we need 0.4, 0.6, 1.05, and
1.83 seconds respectively for the nearest neighbor search,
tangent plane, and classifier computations.

For the Delaunay triangulation (Sec. 6), we used the Tri-
angle software [She96] which provides efficient checking
and enforcing of various quality norms on the produced tri-
angles, such as minimal angles. This is important for the
conditioning of the assembled matrices (Sec. 7). We solve
the linear systems given by the matrices using standard iter-
ative techniques, such as conjugate gradient.

We built our system based on the QSplat rendering soft-
ware [RL00] which uses a bounding sphere hierarchy to
quickly and progressively render very large point sets. We
perform all our moment, tangent plane, and PDE solving

computations on the finest hierarchy level, i.e. the real points
themselves. If desired, the color, normal, and position re-
sults can be propagated upwards in the hierarchy, so that we
immediately benefit from QSplat’s efficient rendering. We
could also perform our PDE computations on coarser hier-
archy levels, e.g. to trade off accuracy for speed. Such an
approach is taken in the multiresolution point set renderer
described in [PKG03] to minimize the cost of local polyno-
mial fitting.

10. Conclusions

The main aim of the presented framework is to carry over the
surface processing capabilities of finite element PDE meth-
ods, well proven for mesh based surfaces, to point based sur-
faces. Our framework can be seen as a two-scale approach.
On the fine scale, we build local point couplings by using
Delaunay triangulations of point projections on local tan-
gent planes. The local couplings define fine-scale finite el-
ements. It is only on this scale that the actual interpretation
of the data as a function is clear and straightforward. On the
next scale, we consider the different tangent spaces of dif-
ferent points, and average the first-scale FE models of these
points to obtain the ’global’ stiffness matrix (Sec. 7). To in-
terpret data as a function on the second scale, one can aver-
age the function values on first-scale local triangles and in-
terpret them as function values on interpolated points, where
point interpolation is done by averaging point interpolations
from the fine scale. We use the local tangent planes solely
as a means of computing the point couplings. Thus, our
approach differs from other methods on point clouds, such
as [Pau03, XWH∗03, ABCO∗01, LP01, AA03].Let us note
that, given different surface approximations, like any pro-
duced by the afore cited methods, we could easily extend
our matrix assembly process to such surfaces, by reimple-
menting Eqns. (7) and (10) on this approximation.

Running our PDEs on the same surfaces represented as
triangle meshes and point sets respectively, with the same
parameter settings, produced virtually identical results. Let
us emphasize that we avoid building a global surface rep-
resentation. Our only global object is the stiffness matrix
describing the PDE to solve. Assembling this sparse global
matrix allows computing the point couplings only once. If
desired, however, we could completely avoid assembling this
matrix, e.g. by using iterative methods needing only one ma-
trix row at a time, which is computed on the fly. Such ap-
proaches are well known e.g. in the field of progressive ra-
diosity.

Our framework can be extended in several directions.
First, more types of PDEs could be solved by merely adapt-
ing the matrix assembly step. Secondly, one could use the lo-
cal couplings described here to build consistent global mesh
representations from point clouds. Finally, multiresolution
schemes on point surfaces can be built to accelerate the PDE
solving to target interactive applications.

c© The Eurographics Association 2004.

Figura 3.4: Suavização de nuvens de pontos usando elementos finitos. Na fila su-
perior mostram-se as nuvens de entrada e na fila inferior, as nuvens
suavizadas. A abordagem não consegue preservar feições (extraído de
Clarenz et al. (2004a)).

R define o raio de influência para cada ponto ci, Si é o número de pontos na
vizinhança.

3.5 Outras	Técnicas

Clarenz et al. (2004a,b) apresentaram uma abordagem para suavizar nuvens de
pontos baseada em equações diferenciais parciais (EDPs) via elementos finitos.
Propuseram construir matrizes locais baseados em triangulações de Delaunay
para, posteriormente, montar uma matriz global que permite a discretização das
EDPs. Depois disso, realiza um processo iterativo de difusão para solucionar um
sistema de equações anisotrópicas e calcular a superfície suavizada. Porém, no
processo, perdem-se as feições afiadas (Figura 3.4).

Outras técnicas para suavizar nuvens de pontos, baseadas na média não-local
(Buades et al., 2005), foram propostas por Guillemot et al. (2012); Schall et al.
(2007). Schall et al. (2007) propõem um filtro bilateral, onde um dos pesos pena-
liza a distância dos pontos e o outro peso, chamado peso de similaridade, compara
a semelhança entre as vizinhanças geométricas.
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Capítulo 4
Filtragem	de	Nuvens	de	Pontos	por

Correção	de	Normais	e	suas

Variantes

4.1 Considerações	Iniciais

A metodologia proposta para remover ruído da nuvem de pontos é composta de
três passos: estimação de normais, filtragem de normais e atualização de pontos.
O primeiro passo fornece uma normal estimada para cada ponto. Posteriormente
realizamos um passo de filtragem de normais, pois a normal estimada pode ser
afetada por ruído presente nas coordenadas dos pontos. Finalmente, atualizamos

Normal Estimation

PCA WPCA RHT

Normal Correction

Bilateral
Gaussian

Threshold
Weights

Bilateral
Mixed

Surface Smoothing

Point Update

Figura 4.1: Pipeline do processo de filtragem de nuvens de pontos e as variantes.
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as posições dos pontos para corresponder com as normais filtradas.

Em cada um desses passos, existem vários métodos que podem ser usados. Os
passos de nossa abordagem e os métodos usados são ilustrados na Figura 4.1. Re-
alizamos iterações nos passos de filtragem de normais e atualização dos pontos.
Temos duas opções para realizar essas duas etapas, podemos realizar l iterações
de ambos os passos, um após o outro (Algoritmo 1). Também podemos realizar l
iterações no passo de filtragem de normais e posteriormentem iterações no passo
de atualização dos pontos (Algoritmo 2). Apesar de aumentar um parâmetro no
processo, adotamos a segunda opção, já que desta forma a atualização dos pontos
é baseada nas normais corrigidas (que espera-se que sejam ótimas).

Input: l
for i = 0 to l do

Realizar um passo de filtragem de normais;
Realizar um passo de atualização dos pontos;

end
Algorithm 1: Alternativa de implementação do algoritmo de dois passos.

Input: l, m
for i = 0 to l do

Realizar um passo de filtragem de normais;
end
for i = 0 tom do

Realizar um passo de atualização dos pontos;
end
Algorithm 2: Alternativa de implementação do algoritmo de dois passos.

Neste capítulo apresentamos os detalhes da fundamentação teórica e compu-
tacional usadas para implementar cada passo do processo de filtragem. Na Sec-
ção §4.2 apresentamos três diferentes mecanismos que podem ser usados para
estimar as normais em uma nuvem de pontos. Na Secção §4.3 fornecemos uma
descrição das três abordagens usadas para filtrar as normais. E na Secção §4.4
descrevemos o método proposto para realizar a atualização dos pontos.
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ni

pi

CP1

CP2

(a) Conjunto de pontos sem ruído.

ni

pi

CP1

CP2

(b) Conjunto de pontos com ruído.

Figura 4.2: Estimação da normal ni para o ponto pi usando PCA. São mostradas
as componentes principais CP1 e CP2.

4.2 Estimativa	de	Normais

O problema de estimativa de normais, descrito em Secção §2.2.1, visa ter uma
normal ni para cada pi. Investigamos três métodos para estimar o conjunto de
normais: análise de componentes principais (PCA), análise de componentes prin-
cipais ponderada (WPCA) e transformada de Hough aleatória (RHT).

4.2.1 Análise	de	componentes	principais (PCA)

Quando tem-se uma superfície suficientemente densa, a nuvem de pontos reflete
a estrutura da superfície. Assim, espera-se que a vizinhança dos pontos esteja
distribuída próximo ao plano tangente. Motivado nisso, uma das aplicações do
PCA é a estimação de normais. Pearson (1901) mostrou que a última componente
principal de um conjunto de pontos é ortogonal ao plano que melhor aproxima o
conjunto. Assim, para estimar a normal ni calculamos as componentes principais
do conjunto de pontos na vizinhança de pi, de modo que a última componente
principal corresponde à normal ni.

Na Figura 4.2, é mostrado um exemplo de estimação de normais usando PCA
para dois conjuntos de pontos amostrados em uma semi-circunferência: o con-
junto sem ruído na Figura 4.2a, e, na Figura 4.2b, o conjunto com ruído.

Para calcular as componentes principais, construímos uma matriz de covariân-

33



Capítulo 4 Filtragem de Nuvens de Pontos por Correção de Normais e suas Variantes

ni

pi

CP1

CP2

(a) Conjunto de pontos sem ruído

ni

pi

CP1

CP2

(b) Conjunto de pontos com ruído

Figura 4.3: Estimação da normal ni para o ponto pi usando WPCA. São mostra-
das as componentes principais CP1 e CP2.

cia para os pontos pj na vizinhança de pi. De modo que, a última componente
principal corresponde à menor covariância (o autovetor associado ao menor au-
tovalor).

Os k vizinhos mais próximos de pi definem a vizinhança usada para construir a
matriz de covariância. O tamanho da vizinhança, dependendo do nível de ruído
influencia a normal estimada. Por isso, fazemos testes variando o tamanho da
vizinhança, os quais são discutidos no Capítulo 5.

4.2.2 Análise	de	componentes	principais	ponderada (WPCA)

WPCA é uma extensão de PCA e também pode ser usado para estimar normais.
WPCA é similar a PCA, salvo que uma função de pesos é usada para definir a
contribuição de cada ponto na construção da matriz de covariância. Mais espe-
cificamente, a matriz de covariância Ci associada ao ponto pi é definida por

Ci = XWX⊤ , (4.1)

onde X é a matriz com colunas formadas pelas coordenadas dos pontos na
vizinhança de pi eW é uma matriz diagonal com entradas wjj diferentes de zero,
correspondendo ao peso associado ao ponto p .

Em nossa implementação, o peso associado a cada ponto pj é dado pela inversa
da distância euclidiana entre pi e pj . Apesar do bom desempenho do WPCA em
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pi

(a) Normais mapeadas na esfera
unitaria

pi

(b) Normais mapeadas em um
acumulador

Figura 4.4: Normais dos planos selecionados aleatoriamente na vizinhança de pi.

aplicações como agrupamento ou classificação, não foi encontrado na literatura
trabalhos que a usem para estimar normais.

Na Figura 4.3, é mostrado um exemplo de estimação de normais usando WPCA.
Ilustramos dois conjuntos de pontos amostrando uma semi-esfera: o conjunto
sem ruído na Figura 4.3a e o conjunto com ruído na Figura 4.3b.

4.2.3 Transformada	de	Hough	aleatória (RHT)

O uso da RHT foi proposto por Boulch & Marlet (2012) como um mecanismo
robusto para estimação de normais. A ideia é selecionar T tríades de pontos
na vizinhança de cada ponto pi. Cada tríade define um plano e cada plano tem
uma normal unitária com origem no ponto pi. Assim, para cada ponto temos um
conjunto de T normais (Figura 4.4).

As esferas unitárias com centro em cadapi são discretizadas em bins (Figura 4.4b).
Após, contamos (processo de votação) o número de normais que caem em cada
bin. Finalmente, se seleciona o bin com mais votos.

No caso dos pontos em R3, a discretização da normal é obtida transformando-
a para o espaço de Hough. Boulch & Marlet (2012) propõem usar o acumulador
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Figura 4.5: Acumulador esférico de Borrmann, com nθ fatias e 2nϕ bins no equa-
dor (extraído de (Boulch & Marlet, 2012)).

esférico de Borrmann (Figura 4.5).

O número de planos a serem selecionados para que a normal estimada seja con-
fiável é definido por:

T =
1

2δ2
log

(
2M

1− α

)
,

onde α é a probabilidade mínima tolerada, tal que a distância entre a distribui-
ção teórica e a distribuição observada seja no máximo δ. Assim, por exemplo,
sendo δ = 0.07 e α = 0.95 e nϕ = 5, temos 23 bins (M = 23):

TR =
1

2(0.07)2
ln
(

2(23)

1− 0.95

)
≈ 700

Este número pode ser diminuído, deixando de selecionar planos quando vo-
tamos repetidamente pelo mesmo bin. Ou seja, quando não existir interseção
entre os intervalos de confiança de dois bins. Isto é, quando a diferença entre os
intervalos de confiança é maior que 2

√
1/T (Figura 4.6).
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r
1

T

r
1

T

pm

pm1

pm2

Figura 4.6: Os intervalos de confiança dos bins mais votados (pm1 e pm2) não se
intersetam.

4.3 Correção	de	Normais

As normais estimadas, usando qualquer um dos métodos na seção anterior, po-
dem não ser suaves devido ao ruído no conjunto de pontos. Por isso, o segundo
passo de nosso pipeline é o passo de filtragem de normais, com o objetivo de ob-
ter um novo campo de normais filtradas N ′ = {nl

i ∈ R3, ∥nl
i∥ = 1}. Usamos

um enfoque iterativo, análogo ao usado em malhas, para filtrar as normais. Mais
especificamente, calculamos a média ponderada das normais na vizinhança do
ponto pi:

nl
i =

(∑
j∈Ni

wjnl−1
j

)
∥
(∑

j∈Ni
wj

)
∥
, (4.2)

onde Ni considera os k vizinhos mais próximos de pi, nl
i é a normal obtida na

iteração l, sendo n0
i ∈ N a normal estimada, e wj é o peso usado para definir a

contribuição de cada normal. Sendo ∥
(∑

j∈Ni
wj

)
∥ o fator de normalização.

Os métodos de filtragem de normais diferem principalmente na escolha dos
pesos wj . Investigamos, três métodos para filtrar as normais, um deles baseado
em um esquema de limiarização, outro baseado em um filtro bilateral e o terceiro
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pi

nj

ni

ni · nj = 0.17

80◦

(a)

pi

nj

ni

ni · nj = 0.65
50◦

(b)

pi

nj

ni

ni · nj = 0.94

20◦

(c)

Figura 4.7: Projeção da normal ni em nj , dada por ni · nj para três ângulos dife-
rentes: (a) 80◦, (b) 50◦ e (c) 20◦.

baseado em um esquema misto, isto é, uma filtragem bilateral usando limiares.

4.3.1 Pesos	Limiarizados

Sun et al. (2007) propuseram um esquema iterativo simples para filtrar as normais.
Este esquema é baseado em um limiar para definir o peso wi na Equação (4.2). O
peso é calculado da seguinte forma:

wj =

0 , if ni · nj ≤ T

(ni · nj − T )2 , caso contrário
, (4.3)

onde 0 ≤ T ≤ 1 é um limiar definido pelo usuário. Este limiar corresponde a
um ângulo máximo tolerado entre as normais ni e nj . Ou seja, se a projeção de ni

em nj , dada por ni · nj , for menor que T a normal não é considerada no cálculo
da normal filtrada (Figura 4.7).

O limiar T usado neste trabalho é 0.65. Para um ângulo grande a projeção de
ni em nj é menor do que o limiar T usado, como é mostrado na Figura 4.7a. Por-
tanto, nesse caso, como expresso na Equação (4.3), o peso wj é zero. O ângulo
maior para o qual wj é zero, é aproximadamente 50◦ (Figura 4.7c). Finalmente,
a projeção de ni em nj é maior do que o limiar T para um ângulo pequeno (Fi-
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gura 4.7b). Nesse caso, a função decrescente (ni ·nj − T )2 penaliza a divergência
das normais ni e nj .

4.3.2 Peso	Bilateral-Gaussiano

Zheng et al. (2011) apresentaram, no contexto de malhas, um esquema de corre-
ção de normais baseado em um filtro bilateral. O filtro bilateral, originalmente
proposto por Tomasi & Manduchi (1998), é comumente usado em redução de
ruído em imagens. O peso do filtro bilateral para reduzir o ruído em imagens é
definido:

wj = Wc(∥p− q∥)Ws(∥g(p)− g(q)∥) , (4.4)

onde q são os pixeis na vizinhança do pixel p.
O peso consiste em duas partes: Wc é uma função monotonicamente decres-

cente da distância entre p e q, enquanto Ws, que representa a diferença de inten-
sidade, é uma função monotonicamente decrescente da diferença de sinais entre
p e q. Medir a diferença de intensidade permite que o filtro preserve features.

Este esquema serve como base do mecanismo proposto por Zheng et al. (2011),
mostrado a seguir:

wj = Wc(||pi − pj||)Ws(||ni − nj||) , (4.5)

Este esquema, similarmente ao filtro bilateral para suavização de imagens, tem
duas partes. Wc corresponde a distância entre os pontos pi e pj e Ws define a
diferença de sinais simplesmente como a distância entre as normais ni e nj . Wc

e Ws são funções Gaussianas definidas como:

Wc(x) = exp(−x2/2σ2
c ), Ws(x) = exp(−x2/2σ2

s) , (4.6)

onde σc, σs são o desvio padrão das Gaussianas. No contexto de malhas σc

foi definido como a média do comprimento das arestas incidentes num vértice.
Seguindo esse raciocínio, definimos σc em relação à distância média de pi aos pj
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pi

nj

ni

‖ni−nj‖ = 1.29

Ws ≈ 0

80◦

(a)

pi

nj

ni

‖ni − nj‖ = 1

Ws = 0.004

60◦

(b)

pi

nj

ni

‖ni−nj‖ = 0.35

Ws = 0.51

20◦

(c)

Figura 4.8: Distância entre os vetores ni e nj , e valor da função Gaussiana
Ws(x) = exp(−x2/2σ2

s) com σs = 0.3 para três ângulos diferentes:
(a) 80◦, (b) 60◦ e (c) 20◦.

na vizinhança de pi.
Não existe um mecanismo estabelecido para ajustar σs, mesmo no contexto de

malhas. Neste trabalho, usamos σs = 0.3 (Figura 4.8). Para esse valor, a partir de
x = 1, o valor da função Gaussiana é próximo a 0 (Ws(1) < 0.01). Isto representa
um ângulo entre as normais ni e nj de 60◦ (Figura 4.9b). Na Figura 4.9a, mostra-
mos normais ni e nj com angulo de 80◦, o valor de Ws(1) ≈ 0. Ou seja, o valor
de Ws é inversamente proporcional ao angulo entre as normais.

4.3.3 Peso	Bilateral-Misto

Wang et al. (2012) propuseram um método que combina ambos os esquemas ex-
plicados anteriormente, usando um peso bilateral consistindo de um peso Gaus-
siano e de um limiar.

Adaptamos o mecanismo de Wang et al. (2012) ao contexto de nuvens de pontos
como segue:

wj = Wc(||pi − pj||)Φs(ni,nj) , (4.7)

onde Wc é um peso Gaussiano, definido como na Equação (4.6). E Φs é a parte
que define a diferença de sinais, dada por um peso limiarizado calculado adapta-
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pi

nj

ni

60◦

(ni − nj) · ni = 0.500

Φs = 0.000

(a)

pi

nj

ni

38◦

(ni − nj) · ni = 0.212

Φs = 0.001

(b)

pi

nj

ni

15◦

(ni − nj) · ni = 0.034

Φs = 0.047

(c)

Figura 4.9: Projeção do vetor ni−nj no vetor nj e valor do peso Φs com T = 0.25
para três ângulos diferentes: (a) 60◦, (b) 38◦ e (c) 15◦.

tivamente da seguinte forma:

Φs(ni,nj) =

0 , if (ni − nj) · ni ≥ T

((ni − nj) · ni − T )2 , caso contrário
, (4.8)

onde T =
√∑

j∈Ni
((ni − nj) · ni)

2/k, e k é o número de pontos em Ni.

Os métodos descritos anteriormente não funcionam corretamente quando as
normais não estão orientadas de forma consistente, como ilustrado na Figura 4.10.
Porém, dado que estes métodos dependem de um procedimento local para filtrar
as normais, unicamente necessitamos garantir a consistência local. Em outras
palavras, o filtro pode ser aplicado invertendo as normais na vizinhança nj se
ni · nj ≤ 0. Este procedimento não garante um campo de normais orientado de
forma consistente no contexto global. No entanto, isso não supõe um problema
em nossa formulação.

4.4 Filtragem	da	Superfície

Depois de obter o campo de normais filtrado, temos que atualizar os pontos para
corresponder com o novo campo de normais N ′. Sun et al. (2007) propuseram

41



Capítulo 4 Filtragem de Nuvens de Pontos por Correção de Normais e suas Variantes

(a) As normais estimadas podem ter orientações in-
cosistentes

(b) (c)

Figura 4.10: (b) Filtragem sem levar em conta a orientação das normais e (c) ori-
entando as normais localmente de forma consistente.

um esquema iterativo para atualizar os vértices de uma malha de acordo com um
novo campo de normais. Uma das vantagens dessa abordagem é que não requer
calculos da área da superfície, que é difícil estimar usando nuvens de pontos.
Alem disso, as normais não precisam estar orientadas de forma consistente.

Baseado neste esquema, propomos um método iterativo para atualizar os pon-
tos.

pl
i = pl−1

i +
1∑

j∈Ni
wj

∑
j∈Ni

n′
j(wjn′

j · (pl−1
j − pl−1

i )) , (4.9)

onde pl
i é o ponto na iteração lª, e p0

i é o ponto do conjunto original P .

Este processo de atualização de pontos, Equação (4.9), pode ser visto como um
deslocamento baseado em pesos ponderados pelas normais n′

j ∈ Ni. Os pesos
são definidos como wjn′

j.(pl−1
j −pl−1

i ), onde wj é definida usando um mecanismo

42



4.4 Filtragem da Superfície

bilateral:

wj = Wc(||pi − pj||)Ws(1− (ni.nj)) , (4.10)

onde Wc e Ws são funções Gaussianas como na Equação (4.6), com desvios pa-
drões σc = maxj∈Ni

(∥pi − pj∥) e σs = 1/3. Com Wc, conseguimos penalizar a
influência de pontos pj afastados de pi. Enquanto que com Ws, controlamos a
influência de normais nj divergentes de ni, conseguindo uma difusão anisotró-
pica.

Neste passo, para lidar com as normais nj cuja orientação não é consistente
com ni, usamos a mesma estratégia de inverter as normais na vizinhança nj se
ni · nj ≤ 0.

No capítulo seguinte mostramos a eficácia de nosso esquema de atualização de
pontos combinado com os distintos mecanismos para estimar e filtrar o campo
de normais.
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Capítulo 5
Resultados

Neste capítulo apresentamos os resultados de cada possível implementação da
metodologia proposta neste trabalho. Mais precisamente, examinamos os resul-
tados das seguintes combinações: análise de componentes principais (PCA) +
Filtragem de Normais por Limiar + Atualização de pontos (PLA), PCA + Filtra-
gem de Normais por Bilateral Gaussiano + Atualização de pontos (PGA), PCA +
Filtragem de Normais por Bilateral Misto + Atualização de pontos (PMA), aná-
lise de componentes principais ponderada (WPCA) + Filtragem de Normais por
Limiar + Atualização de pontos (WPLA), WPCA + Filtragem de Normais por
Bilateral Gaussiano + Atualização de pontos (WPGA), WPCA + Filtragem de
Normais por Bilateral Misto + Atualização de pontos (WPMA), Transformada
de Hough Aleatória + Filtragem de Normais por Limiar + Atualização de pontos
(HLA), Transformada de Hough Aleatória + Filtragem de Normais por Bilateral
Gaussiano + Atualização de pontos (HGA), Transformada de Hough Aleatória +
Filtragem de Normais por Bilateral Misto + Atualização de pontos (HMA).

Além disso, avaliamos o impacto de variar o tamanho da vizinhança em cada
passo do pipeline, consideramos vizinhanças de 7, 15 e 21 pontos mais próximos
para cada ponto pi. O número do lado direito do acrônimo indica o tamanho
da vizinhança, por exemplo, PLA7 significa que 7 vizinhos mais próximos são
considerados nos cálculos.
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Igualmente, consideramos o número de iterações a serem empregadas durante
o passo de filtragem de normais e o passo de atualização de pontos. A conver-
gência dos métodos descritos em Equação (4.2) e Equação (4.9) não é garantida
mesmo no contexto de malhas. Portanto, na prática, o número de iterações tem
que ser determinado a priori. Testamos o passo de filtragem de normais com
cinco números de iterações: 2, 4, 8, 16 e 32, e o passo de atualização de pontos
com 4 números de iterações: 5, 10, 20 e 40, o que resulta em vinte combinações.

Executamos as combinações em cinco modelos com ruído sintético adicionado
aos pontos com desvio padrão σ proporcional a 0.2 da longitude media das arestas
da malha do modelo original. Dois tipos de ruído são testados: ruído Gaussiano
na direção normal(RGN) e ruído Gaussiano com direção aleatória (RGA). Na
Figura 5.4 e na Figura 5.5 são mostrados os modelos usados nos experimentos, os
modelos são: Bitorus, Elefante, Fêmur, Niccolo e Fandisk.

5.1 Métricas

Podemos usar a correspondência um-a-um entre os pontos na superfície original
M e na superfície filtrada S para medir a qualidade do processo de suavização.
A saber, definimos uma métrica Ek relacionada com a curvatura: primeiramente,
calculamos a diferença da curvatura em cada ponto pi em M e S , e logo, cal-
culamos a média das diferenças. Quanto mais próximo de zero é Ek, melhor é
o processo de suavização. A curvatura pode ser calculada usando o operador de
variação superficial descrito em Pauly et al. (2003a).

Comparamos também a área da superfície do modelo original M e filtrado S ,
esta métrica é usada na literatura.

Nos gráficos de box plot na Figura 5.1, pode se observar o desempenho de cada
uma das vinte e sete alternativas de suavização de nuvem de pontos no modelo
Elefante variando o numero de iterações para filtragem de normais e atualização
de pontos. O erro varia consideravelmente para todos os métodos, mostrando
que o número de iterações afeta significativamente o desempenho. Alem disso,
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Figura 5.1: Avaliação quantitativa das métricas usando diferentes combinações do
método de suavização no modelo Elefante (×10−4).

podemos ver que os métodos que utilizam PCA e Transformada de Hough ale-
atória (RHT) com vizinhanças pequenas tendem a gerar erros menores do que
outras alternativas para o erro da área. Igualmente, para o erro da curvatura,
a estimação de normais usando PCA e WPCA com vizinhanças pequenas têm
melhor desempenho.

O erro da área × curvatura é mostrado no scatter plot da Figura 5.3 para todas
as 540 possíveis implementações (9 técnicas com 3 tamanhos de vizinhanças e
20 opções da iteração) para suavizar a nuvem de pontos Bitorus. Os pontos em
destaque correspondem ao melhor resultado em termos da área (inferior direito)
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Figura 5.2: Erro médio de cada alternativa para todos os modelos variando as 27
opções de vizinhança e número de passos por cada iteração.

e em termos da curvatura (inferior esquerda) assim como os piores em termos
da área (superior direita) e em termos da curvatura (superior direita). O modelo
destacado no meio na direita é um caso médio.

Considerando as 60 variações de cada implementação (3 tamanhos de vizinhan-
ças e 20 opções por iteração), na figura 5.2 mostramos os erros da curvatura média
e a área para todos os modelos. Pode se observar que o desempenho da aborda-
gem de pesos limiarizados é melhor em relação ao erro da área, enquanto não é
possível assinalar qual é o melhor método para o erro da curvatura média.

5.2 Comparações	com	Outras	Técnicas

Comparamos nosso método com LOP, WLOP, APSS e RIMLS. Para cada um
desses métodos, testamos três combinações de parâmetros: o conjunto de pa-
râmetros padrão e outras duas combinações que produziram resultados visual-
mente agradáveis. Desses três resultados, escolhemos o conjunto que deu o me-
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Figura 5.3: Scatter plot para as métricas área × curvatura no modelo Bitorus (ruído
aleatório).

lhor resultado em relação aos erros de área e curvatura média. O conjunto de
parâmetros para os métodos são: para LOP e WLOP (raio de suporte h, µ con-
trolando a força de repulsão), APSS (escala do filtro, parâmetro esférico), RIMLS
(escala do filtro, nitidez) e o nosso (o acrônimo descrito anteriormente, número
de iterações para filtragem das normais, número de iterações no passo de atuali-
zação dos pontos). Uma comparação qualitativa pode ser vista na Figura 5.4. Na
Tabela 5.1 mostramos o resultado das comparações, onde EA e Ek representam
o erro da área e o erro da curvatura. Podemos observar que nosso método é bas-
tante competitivo, superando em alguns casos o método RIMLS (estado da arte
em suavização de nuvens de pontos).
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Figura 5.4: Suavização de nuvens de pontos: Bitorus com 4350 pontos, Elefante
com 24955 pontos, Fêmur com 15185 pontos and Niccolo with 25239
pontos. De direita a esquerda: modelos originais, modelos com ruído
Gaussiano com direção aleatória, e os resultados de Locally Optimal
Projection (LOP), Weighted Locally Optimal Projection (WLOP), Al-
gebraic Point Set Surfaces (APSS), Robust Implicit Moving Least Squares
(RIMLS) e nosso método.
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Tabela 5.1: Melhor conjunto de parametros e erros
Modelo Ruído Método Parâmetros EA ×10−3 Ek ×10−3

Double Torus

RGN

LOP (0.14, 0.3) 53.62 0.78
WLOP (0.12, 0.3) 26.45 0.72
APSS (3, 0.5) 5.59 0.49

RIMLS (5, 0.5) 4.24 0.24
Nosso (PTU7, 32, 5) 0.59 0.31

(|S| = 4350)

RGA

LOP (0.9, 0.4) 95.68 0.45
WLOP (0.12, 0.3) 59.42 0.72
APSS (3, 0.5) 23.16 0.54

RIMLS (3, 0.5) 12.39 0.31
Nosso (WPTU21, 4, 5) 0.22 0.34

Elephant

RGN

LOP (0.07, 0.4) 11.86 0.18
WLOP (0.05, 0.5) 5.64 0.24
APSS (3, 0.75) 0.70 0.12

RIMLS (4, 1) 6.59 0.14
Nosso (PGU21, 32, 5) 0.24 0.24

(|S| = 24955)

RGA

LOP (0.05, 0.4) 42.14 0.15
WLOP (0.03, 0.4) 38.87 0.13
APSS (2, 1) 1.57 0.09

RIMLS (2, 0.75) 1.58 0.08
Nosso (HG21, 32, 5) 0.04 0.22

Fandisk

RGN

LOP (0.08, 0.3) 1.22 0.21
WLOP (0.07, 0.35) 37.36 0.20
APSS (2, 1) 5.76 0.10

RIMLS (4, 0.5) 0.59 0.05
Nosso (HTU21, 16, 5) 0.02 0.08

(|S| = 25894)

RGA

LOP (0.07, 0.35) 21.82 0.20
WLOP (0.07, 0.35) 35.21 0.20
APSS (2, 1) 0.58 0.08

RIMLS (4, 0.75) 1.13 0.08
Nosso (HGU7, 32, 5) 0.04 0.09

Nicolo

RGN

LOP (0.06, 0.3) 141.30 0.10
WLOP (0.07, 0.25) 10.52 0.10
APSS (4, 0.5) 9.74 0.10

RIMLS (4, 1) 0.18 0.08
Ours (WPTU15, 8, 5) 0.05 0.09

(|S| = 25239)

RGA

LOP (0.04, 0.3) 71.31 0.11
WLOP (0.04, 0.25) 25.52 0.10
APSS (4, 0.75) 2.67 0.11

RIMLS (4, 1) 0.36 0.09
Nosso (PGU7, 16, 5) 0.22 0.09

Femur

RGN

LOP (0.07, 0.4) 13.92 0.26
WLOP (0.06, 0.4) 0.17 0.26
APSS (3, 0.75) 1.55 0.22

RIMLS (4, 0.75) 0.40 0.23
Nosso (HTU7, 32, 5) 9.07 0.22

(|S| = 8168)

RGA

LOP (0.06, 0.3) 33.19 0.26
WLOP (0.06, 0.4) 7.84 0.26
APSS (3, 1) 0.98 0.23

RIMLS (3, 0.75) 0.60 0.21
Nosso (HTU7, 32, 5) 10.20 0.22
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Figura 5.5: Nosso método é capaz de preservar feições afiadas enquanto suaviza
as superfícies. De esquerda a direita: modelo original e com ruído;
resultados usando LOP, WLOP, APSS, RIMLS e nosso método.

5.3 Preservação	de	Feições	Afiadas

Finalmente, realizamos uma comparação qualitativa mostrando a eficácia de nossa
proposta para preservar feições afiadas. Na figura 5.5 mostramos o resultado de
suavizar o modelo Fandisk usando os métodos LOP, WLOP, APSS, RIMLS e o
nosso. A cor mostra a distribuição da curvatura. Podemos observar que nosso
método tem bons resultados, comparáveis com RIMLS.

5.4 Modelos	Reais

Além disso, testamos nosso método com modelos escaneados com ruído do scan-
ner. Na figura 5.6 mostramos o resultado de suavizar o modelo Busto. No modelo
Busto, utilizamos os seguintes parâmetros PGU7 com cinco iterações no passo
de filtragem de normais e 7 iterações no passo de atualização de pontos. Obser-
vamos que nosso método consegue preservar feições de forma bastante rasoável.
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Figura 5.6: Suavização de um modelo real escaneado.
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Capítulo 6
Conclusões

Neste capítulo são apresentadas as principais contribuições desta dissertação no
contexto de suavização de superfícies representadas por nuvens de pontos, bem
como algumas de suas limitações. Além disso, são apresentadas algumas ideias
para trabalhos futuros no sentido de dar continuidade à abordagem proposta.

6.1 Contribuições

As principais contribuições deste trabalho de mestrado podem ser sucintamente
sumarizadas tal como segue.

• Mostramos que a abordagem de dois passos (filtragem de normais/atuali-
zação dos pontos) para suavizar superfícies, comumente empregada no con-
texto de malhas, pode ser estendida para o contexto de nuvens de pontos.
Nossa abordagem realiza um passo prévio para estimar as normais, e para
os passos de estimação e atualização de normais, utiliza e compara técnicas
existentes.

• Baseado em métodos para atualizar vértices no contexto de malhas, propo-
mos um método para atualizar os pontos que leva em conta a vizinhança de
cada ponto. A influência de cada normal na vizinhança é dada por um peso
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(a) Modelo Pelvis original
(b) Modelo Pelvis com ruído

Gaussiano aleatorio (c) Modelo Pelvis suavizado

Figura 6.1: Um inconveniente com o ponto conjunto de superfícies é determinar
a relação de vizinhança de pontos em superfícies com folhas próximas.

bilateral que leva em conta, além da distância entre os pontos, a distância
entre as normais.

• Realizamos um conjunto de experimentos abrangente, variando o número
de vizinhos e o número de iterações em cada passo do pipeline. Os experi-
mentos mostram que os parâmetros utilizados podem influenciar conside-
ravelmente a qualidade do processo de suavização.

• Finalmente, realizamos comparações com métodos do estado da arte mos-
trando que o esquema de filtragem de normais/atualização de pontos tem
um desempenho superior a métodos existentes, sendo bastante competi-
tivo e uma boa alternativa para suavização de superfícies baseadas em pon-
tos.

6.2 Limitações

Como a maioria de métodos prévios de suavização de superfícies baseados em
vizinhanças, nosso método não tem bom desempenho em presença de superfícies
com folhas paralelas próximas, como pode ser visto na Figura 6.1.

Uma possível solução a esse problema é usar algum algoritmo para orientar
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6.3 Trabalhos Futuros

normais, como o proposto por Hoppe et al. (1992), após o passo de estimação
de normais. Assim, no passo de filtragem de normais as normais seriam mais
precisas e no passo de atualização dos pontos, normais com orientação oposta
não influenciariam a nova posição dos pontos.

6.3 Trabalhos	Futuros

Após a pesquisa, desenvolvimento e avaliação dessa técnica de suavização, algu-
mas ideias foram propostas no sentido de consolidar a base para trabalhos futu-
ros. Dentre elas destaca-se a utilização de um quadro teórico proposto por Mitra
et al. (2004) para realizar um estudo mais profundo dos raios de vizinhança no
passo de estimação de normais. Além disso, uma análise com diferentes distri-
buições de ruído é um estudo útil, principalmente fazendo uso de um benchmark
como o proposto em Berger et al. (2013).
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