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Resumo

os anos recentes, suavizagao de superficies é um assunto de intensa
pesquisa em processamento geométrico. Muitas das abordagens para
suaviza¢io de malhas usam um esquema de duas etapas: filtragem de
normais seguido de um passo de atualizagio de vértices para corresponder com
as normais filtradas. Neste trabalho, propomos uma adaptacio de tais esquemas
de duas etapas para superficies representadas por nuvens de pontos. Para isso,
exploramos esquemas de pesos para filtrar as normais. Alem disso, investigamos
trés métodos para estimar normais, analisando o impacto de cada método para
estimar normais em todo o processo de suavizacao da superficie. Para uma ana-
lise quantitativa, além da comparagio visual convencional, avaliamos a eficacia
de diferentes op¢des de implementagio usando duas medidas, comparando nos-
sos resultados com métodos de suavizacao de nuvens de pontos encontrados a
literatura.
Palavras-chave: suavizacao de superficies; nuvens de pontos; estimativa de nor-

mais; filtragem de normais.






Abstract

n the last years, surface denoising is a subject of intensive research in geome-
try processing. Most of the recent approaches for mesh denoising use a two-
step scheme: normal filtering followed by a point updating step to match

the corrected normals. In this work, we propose an adaptation of such two-step
approaches for point-based surfaces, exploring three different weight schemes
for filtering normals. Moreover, we also investigate three techniques for normal
estimation, analyzing the impact of each normal estimation method in the whole
point-set smoothing process. Towards a quantitative analysis, in addition to con-
ventional visual comparison, we evaluate the effectiveness of different choices of
implementation using two measures, comparing our results against state-of-art
point-based denoising techniques.

Keywords: surface smoothing; point-based surface; normal estimation; normal

filtering.
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Capitulo

Introducao

1.1 Contextualizacao e Motivacao

O mundo ao nosso redor pode ser capturado e modelado por meio das superfi-
cies que percebemos. Na matematica, as superficies e as suas propriedades tém
sido amplamente estudadas desde os séculos passados. Esses conceitos foram
estendidos e aplicados na drea de modelagem e processamento geométrico para
muitas finalidades como por exemplo, suavizagao de superficies.

O processamento geométrico €, principalmente, aplicar algoritmos a mode-
los geométricos, onde o algoritmo representa a a¢ao e a geometria representa o
objeto (Mario Botsch, 2o10). Para modelar objetos em trés dimensdes, muitas
pesquisas foram conduzidas, focadas em encontrar uma representagao computa-
cional apropriada. Nao existe uma representa¢ao que seja suficientemente boa
para todas as aplica¢oes, pois aplicagoes distintas requerem representagoes dis-

tintas, visando por exemplo:

* Manipular objetos complexos a partir de objetos simples;
* Permitir editar um modelo para, por exemplo, animar algumas partes dele;

* Demandar um custo de meméria ou tempo de processamento baixo.
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Algumas abordagens utilizadas para representar as superficies sao: malhas de
poligonos, nuvens de pontos, splines hierarquicos e superficies de subdivisao. A
representa¢iao mais comum de superficies em computagao grafica é, provavel-
mente, malhas de poligonos. Uma malha de poligonos é essencialmente um con-
junto de vértices (pontos), arestas (conexdo entre vértices) e faces (conjunto fe-
chado de arestas) que representam explicitamente a superficie. Na maioria das
vezes, as faces sao representadas por tridngulos, quadrilateros ou outros poligo-
nos simples, para simplificar os calculos e a renderizacao. Devido a sua simpli-
cidade, as malhas podem ser processadas eficientemente em computadores mo-
dernos e placas graficas. As vantagens sao principalmente a facilidade para a
visualizacao, e também a informagao de conectividade explicita.

As nuvens de pontos, a representacao usada neste trabalho, sao um tipo de
representac¢ao de superficies conhecidas como superficies no estruturadas. As
superficies nao estruturadas sdo as representacoes explicitas que nao possuem
um modelo de dados associado que indique a conexao entre os elementos basi-
cos, que podem ser pontos ou poligonos. Quando o elemento basico é o ponto,
tem-se uma nuvem de pontos, a representacao mais simples que existe. A nuvem
de pontos é um conjunto nio ordenado de pontos (z,y, z em 3D) que approxima
a superficie. Esta representacio foi inicialmente proposta em 1985 por (Levoy &
Whitted, [985). Recentemente este tipo de representa¢do tem experimentado
um ressurgimento devido, principalmente, a popularizagao dos scanners 3D. As
principais vantagens da representagao por pontos sao sua simplicidade e facili-
dade de renderizagdo. As principais desvantagens sao: nao se tem informacgao da
conectividade, topologia ou quantidades diferenciais além da limita¢ao da teoria
matematica para manipular tal representacao.

As nuvens de pontos obtidas por scanners geralmente tém ruido, com maior con-
centra¢ao proximo das fei¢des afiadas. Algoritmos de reconstrugio de superficie
conseguem remover o ruido da superficie mas transformam a representacio, por
exemplo, em malhas de poligonos. Quando se deseja trabalhar diretamente com
a nuvem de pontos, temos que aplicar um algoritmo de suavizacao para remover

o ruido. No trabalho realizado propomos um método de suaviza¢ao de nuvens



1.2 Objetivos

de pontos que preserve fei¢oes afiadas.

1.2 Objetivos

O objetivo deste trabalho foi investigar uma metodologia de duas etapas para
filtrar superficies, no contexto de superficies de pontos. As etapas desta meto-
dologia sdo filtragem de normais e atualiza¢do de pontos (vértices no contexto
caso de malhas). Enquanto normais em malhas sio diretamente definidas por
cada face, em nuvens de pontos precisamos estimar as normais previamente. In-
vestigamos trés métodos para estimar normais, trés métodos para filtrar normais
e propomos um método para atualizar os pontos. O estudo apresentado permite
identificar o melhor conjunto de ferramentas, e como implementa-las em cada
passo do processo de suavizagiao para obter um método robusto e efetivo para
suavizar nuvens de pontos a partir da filtragem de normais.

Em sintese, sao objetivos especificos desse projeto:

* A investigacio detalhada das alternativas para estender o esquema de sua-
vizagio de superficies via filtragem de normais no contexto de nuvens de
pontos. Mais especificamente, investigar as possiveis implementagdes de
cada etapa do pipeline de suavizagio proposto e analisar a eficacia de cada

combinacio.

* Desenvolver um método de atualizagao de pontos a partir de um campo de

normais filtradas de modo a preservar fei¢oes.

* Um conjunto abrangente de compara¢des com técnicas de suavizagio de

nuvens pontos.

* A defini¢ao de medidas quantitativas para analisar a eficacia das técnicas de
suavizag¢ao, o que permite avaliar objetivamente a qualidade dos métodos

de suavizacao baseadas em nuvens pontos.
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1.3 Organizacao
Esta dissertagao esta organizada da seguinte maneira:

[Capitulo 2: os principais conceitos que tém orientado esta disserta¢ao sao
apresentados.

Capitulo 3: apresentamos uma revisao bibliografia sobre as técnicas de

suaviza¢io de superficies representadas por nuvens de pontos.

Capitulo 4: apresentamos a metodologia proposta para remover ruido da

nuvem de pontos e as alternativas dos passos que compdem nosso pzpeline:

estimac¢ao de normais, filtragem de normais e atualizagao de pontos.

Capitulo 5: as métricas propostas para comparar a eficicia dos métodos

para suavizar nuvens de pontos junto com um estudo comparativo entre o

esquema proposto e outras técnicas de suavizagiao para nuvens pontos.

Capitulo G: apresentamos as conclusdes desse projeto de mestrado, res-

saltando as contribuicoes e limita¢des, além da discussao de trabalhos fu-

turos.



Capitulo

Marcos Teoricos

2.1 Consideracoes Iniciais

Neste capitulo apresentamos alguns dos principais conceitos que tém orientado
esta dissertacao. Comegamos descrevendo a representac¢io de superficies usando
nuvens de pontos, os principais algoritmos para estimar normais e as estruturas
de dados mais comuns para as armazenar. Continuamos introduzindo o tema de
filtragem bilateral muito utilizado em imagens e que serve como inspiragao para
métodos de suavizagio de superficies. Finalmente, apresentamos brevemente
métodos de suavizagao de malhas em dois passos que inspiraram nosso método

de suavizagdo de nuvens de pontos.

2.2 Nuvens de Pontos

A representagdo mais simples de uma nuvem de pontos consiste somente das

coordenadas dos pontos:

P={p.eR’ic{l,...,n}}

Algoritmos especificos para diversos problemas no contexto de nuvens de pon-
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tos tem sido desenvolvidos. Alguns desses problemas sao suavizagao de nuvens
de pontos, reconstrucao de superficies, estimacao de normais, dizimagao e amos-
tragem (Gross & Phister, 2007).

Outra representacao simples de nuvem de pontos considera, além das coorde-

nadas, a normal de cada ponto e é chamada de nuvem de pontos orientada:

P={p; cR>m eR’iec{l,.. . n}}

As normais podem ser estimadas utilizando algumas técnicas que geralmente
analisam a vizinhanc¢a de cada ponto. A seguir sao descritas algumas técnicas de

estimac¢ao de normais.

2.2.1 Estimativa de Normais

A estimativa de normais em nuvens de pontos é um tépico bastante estudado na
area de processamento geométrico. Seja uma superficie M amostrada por uma
nuvem de pontos P. O problema de estimativa de normais visa ter uma normal
n; por cada p;, definida como um vetor perpendicular a um plano tangente a M
em p;. Cada normal n; tem origem no ponto p; associado e o campo de normais
é representado por N = {n; € R?, ||n;| = 1}.

As normais estimadas servem como entrada de alguns algoritmos para remog¢ao
de ruido, reconstrucio de superficies ou detec¢io de fei¢cdes afiadas. A qualidade
das normais estimadas depende de varios fatores, como fei¢oes afiadas na super-
ticie, regularidade de amostragem e o nivel de ruido na nuvem de pontos. Nem
todos os algoritmos existentes para estimar normais conseguem lidar com esses
fatores.

Uma das abordagens proposta por Hoppe et all (1992), aproxima um plano local-
mente para cada ponto e sua vizinhan¢a usando minimos quadrados (Figura p-1).

Tx = ¢ é encontrado minimizando o erro e(n, ¢) = Zle(nT pi —¢)?

O planon
com a restrigio n' - n = 1. Essa abordagem é equivalente a encontrar o plano
usando [PCA| na vizinhanca de cada ponto (Sec¢o §j4.2.1). Assim, a normal para

cada ponto é a normal ao plano estimado para cada vizinhanga. A vizinhanga
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P

Figura 2.1: Aproximacao de um plano a vizinhanga do ponto p;

pode ser definida como os k vizinhos mais proximos ou como os pontos dentro
de um raio r ao redor do ponto. As normais obtidas desse processo nio sao ori-
entadas, demandando um pos-processamento para obter um campo de normais

orientadas de forma consistente.

Pauly et all (2003b) observaram que os pontos mais préximos na vizinhanca de
um ponto p; deveriam ter maior influencia na minimiza¢ao do erro de aproxima-

¢ao do plano tangente. Por isso, adicionaram um peso ao erro:

k

e(n.c) =) (0" -p;—c)0(|p; —pl).

i=1

onde 6 é o peso Gaussiano: 0(t) = exp(—t?/h?), na qual h é um parimetro

indicando o tamanho das fei¢cdes da superficie.

Mitra & Nguyen (2003) investigaram uma forma de escolher o raio r da vizi-
nhanca adaptativamente. Eles observaram que o mesmo 7 para todos os pontos
podia produzir resultados errados, devido a que em regioes com alta curvatura o
erro da minimizagao aumenta proporcionalmente de acordo ao r. Observaram
também, que a densidade da nuvem de pontos pode afetar o resultado. Assu-
mindo um modelo de ruido aleatério, com média igual a zero e desvio padrao o,
propuseram um método analitico para delimitar o erro da normal como fun¢io

de 7, utilizando uma estimac¢ao da curvatura local s e da densidade local p para
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@ (b)

Figura 2.2: Células voronoi para um conjunto de pontos [a) sem ruido e [b) com
ruido, onde A € o pélo da célula Voronoi do ponto p;

encontrar um 7 6timo. O 7 6timo pode ser encontrado com probabilidade 1 — a:

1 On 4o
r=|(—|c cs0;,
K\ \/ap

onde ¢; e ¢y sao duas constantes.

Amenta & Bern (1998) usaram o diagrama Voronoi de P para obter uma esti-
mativa das normais. Assumindo que P tem alta densidade de pontos, a célula
de Voronoi para um ponto p; é alongada na dire¢ao perpendicular a superficie
(Figurap.2). O vetor de um ponto ao pélo da sua célula de Voronoi é uma estima-
tiva da normal, sendo que o pdlo da célula de Voronoi é o ponto mais distante ao
ponto que define a célula. Uma desvantagem deste método, além de ser custoso,
é que é muito sensivel ao ruido (Figura p2B).

Li et all (2010), assumindo uma distribui¢ao Gaussiana do ruido, propuseram
um método de duas etapas para estimar normais. A primeira etapa é estimar a
escala de ruido: para cada ponto p; amostram 7" planos aleatoriamente (selecio-
nando triades de pontos na vizinhang¢a do ponto). Apéds, para cada plano calculam
a distdncia do plano aos pontos na vizinhanca de p;. Baseado nessas distancias,
calculam a escala do ruido. Posteriormente, na segunda etapa, utilizando a escala

do ruido, calculam um plano tangente a cada ponto baseado em um nicleo de
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densidade. Esse método consegue bons resultados na presenga de ruido e fei¢oes
afiadas. No entanto, a variacao de densidades nas bordas afeta o desempenho do
kernel de densidade, favorecendo os lados com alta densidade.

Recentemente, Boulch & Marlet (2012) propuseram um método baseado na

fransformada de Hough aleat6ria (RHT) (Borrmann et all, 2orr). Eles utilizam

métodos estatisticos para encontrar o nimero minimo de amostras de planos a
serem consideradas na vizinhanc¢a de cada ponto. Além disso, definiram uma
condi¢io de parada que consegue acelerar o processo de amostragem. Esse mé-
todo consegue bons resultados em nuvens de pontos com densidade anisotrépica.

Descrevemos o método em maior detalhe na Sec¢ao §jy.2.3.

2.2.2 Estruturas de Dados

As nuvens de pontos podem ser muito grandes, chegando a milhes de pontos.
Por tanto, é desejavel dividir o conjunto de pontos em subconjuntos menores.

Dada a natureza nao estruturada das nuvens de pontos, precisamos de uma
estrutura de dados para armazenar a nuvem de pontos. Além das coordenadas
dos pontos, as estruturas de dados, devem fornecer informagao da vizinhanca de
cada ponto. Lembramos que as vizinhangas podem ser definidas de acordo com
um raio 7: N; = {p; € P, ||p; — p;|| < r}, ou podem também ser definidas como
os k pontos mais proximos de p;.

Uma estrutura de dados muito usada para manipular nuvens de pontos é a Oc-
tree. Proposta originalmente por (Meaghei, [982), é uma estrutura de dados es-
pacial hierarquica modelada como uma arvore. Ela engloba todos os pontos e
particiona a caixa envolvente em oito partes iguais. Cada parte que contenha
pontos ¢é recursivamente dividida em oito partes. A recursao continua até atin-
gir um nimero minimo de pontos num octante (Figura p.3). Uma desvantagem
dessa estrutura de dados é que geralmente as nuvens de pontos nio podem ser
divididas de forma uniforme, o que leva a uma estrutura de dados desequilibrada
e ineficiente.

Outra estrutura de dados usada para manipular os dados é a kd-Tree, proposta
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(a) Vista lateral do modelo (b) Vista frontal do modelo

Figura 2.3: Subdivisao do modelo Elephant usando uma Octree com no minimo
vinte pontos por octante.

por (£975). A kd-Tree é uma arvore de busca de k dimensées. No caso
das nuvens de pontos, a drvore tem 3 dimensiones. Partindo da caixa envolvente
contendo todos os elementos, recursivamente divide-se as células em regides com
igual nimero de elementos. A divisao ¢é realizada usando um plano de corte per-
pendicular a algum eixo coordenado, dividindo a dimensdo de maior extensao
espacial. Uma vantagem da kd-Tree é que consegue gerar uma arvore balanceada
de busca. Neste trabalho, usamos uma kd-Iree para armazenar os dados e para

fazer as consultas das vizinhangas.

Outra estrutura de dados espacial mais genérica ¢ a |hierarquia de volumes enf

folvente (BVH). Proposta por Klosowski et al] (1998, ela agrupa objetos geomé-

tricos considerando cada objeto como sendo um n6 folha da drvore. Posterior-
mente, agrupa os nés usando alguma estratégia. Essa estratégia pode ser definida

de tal forma que o resultado seja a Octree ou a kd-Tree.

10
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Entrada Resultado
Espacial Rango

Multiplicagdo dos pesos espaciais e de rango

Figura 2.4: A filtragem bilateral consegue suavizar a imagem de entrada preser-
vando as fei¢coes (Resultado). Um peso ponderado da vizinhanga subs-
titui cada pixel. O peso é composto por um peso espacial, que penaliza
a distancia, e por um peso de rango, que penaliza a varia¢ao da inten-
sidade. Assim, somente pixeis préximos com intensidade semelhante
contribuem no resultado final. Os pesos mostrados sao aplicados ao
pixel sob a seta. (Imagem adaptada de Kornprobst & Tumblin (2009))

2.3 Filtragem Bilateral

A filtragem bilateral, originalmente proposta por [Tomasi & Manduchi (1998, é

um método utilizado para suavizar imagens preservando fei¢oes. Esse método
baseia-se na filtragem Gaussiana, que substitui cada pixel por uma ponderagao

dos vizinhos utilizando convolugao:

pi= Y Golll: — zil)I;, .1

piEN;

onde ||z; — ;|| representa a distancia dos pixeis, N; € a vizinhanca do pixel p;, I;

¢ a intensidade da cor do pixel p; e G, € o kernel Gaussiano definido pela funcao:

2o

2
Gg(x) L exp (—%) , (2.2)

II
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Note-se que a influéncia de cada pixel p; vizinho do pixel p; depende unica-
mente da distancia espacial. A filtragem bilateral trata essa lacuna introduzindo
um termo que leva em conta a intensidade da cor. A ideia principal é que um pi-
xel com intensidade similar tenha mais influencia que um pixel com intensidade

distinta.

Tomasi & Manduchi (1998) definiram a filtragem bilateral:

|z; — ]]) G, (

1
i = g > Gal Ii — Li|)I; (2.3)

Di pj GM
onde G, é o peso espacial, que penaliza a distincia entre os pixeis. O peso de
rango G, penaliza a variacio na intensidade dos pixeis, representada por |; — I;|.

Ambos os pesos, sao definidos pela fun¢do Gaussiana da Equacio (2-2). Final-

mente, W, é o fator de normalizacao que garante que a soma dos pesos seja 1.0:

Wy, = Z Go,(

P EN;

|z — 25]))Go, (Ii — 1) (2.4)

e os parametros o, € 0, determinam o nivel de suaviza¢ao da imagem. Na Fi-
gura .4, mostramos como os pesos sao calculados para um pixel préximo a uma

borda.

A filtragem bilateral foi estendida para malhas simultaneamente por Jones et
all 2003 e por Fleishman et al] (2003). Eles assumem que a malha é localmente
plana, ou seja existe um plano que aproxima localmente cada vértice junto com
sua vizinhan¢a. Ambos os trabalhos (Fleishman et all, 2003; Jones et all, 2003)
definem o peso espacial como a distincia entre os vértices da malha. Ja o peso

de rango é definido de forma diferente em cada trabalho.

Idealmente, o vértice p; € igual a proje¢ao dele no plano tangente definido pelo
vizinho q;, ou seja p; = 7q,(p;). Por isso, Jones et al] (2003) definem o peso de
rango como sendo G, (||p; — 7q, (Pi)||), assim a influéncia de um vizinho q; cujo

plano tangente se encontre longe do ponto p; é minimizada. O filtro é definido

12
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como:

1
Wpi Zqi eN;

no qual aq, é a densidade de amotragem.

F(pi) = aq;Go,([[pi — @) G, (IPi = 7q, (Pi)]) .5)

Outra forma de abordar o fato de que a malha ¢é localmente plana é assumindo
que a projec¢ao do vetor diferenca entre q; e p; na normal do vértice p, deve ser
zero. Ou seja, p; + ((q; — p:) - n;)n; = p;. Isto resulta no filtro proposto por

Fleishman et al] (2003):

1
= 0q,Go.(
WPZ’ ZqiEM 1

F(p:) = Pi — 4l Go, ([(q — pi) - mil)((q; —pi) - ;). 2.6)

Uma discussao sobre as principais diferencas e semelhancas destes dois filtros
pode ser encontrada em Kornprobst & Tumblin (2009). Sendo a diferenca mais
importante que o filtro definido por Fleishman et al] (2003), ao contrério do filtro
de Jones et al] (2003), evita que os vértices se movam sobre o plano tangente, ji

que o vértice p; € movido ao longo de sua normal n,.

2.4 Suavizacao em Dois Passos de Malhas

Triangulares

As malhas triangulares sio compostas de vértices (1) e arestas (4) que formam
faces triangulares (F). A suavizacdo de malhas pode ser vista como o processo
de deslocar vértices afetados por ruido para uma posi¢ao mais préxima da sua
posi¢ao correta (sem ruido). A atualizagdo dos vértices pode ser feita em um ou
dois passos. Os métodos que suavizam a malha em um passo utilizam as posi¢coes
dos vizinhos para atualizar a posi¢ao de cada vértice. Métodos que usam dois
passos ajustam primeiro as normais das faces e depois, atualizam os vértices para

corresponder com as normais ajustadas.

13
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Figura 2.5: Tipos de vizinhanca da face F;: (I) conjunto de faces que compartem
um vertice com a face F; e (I) conjunto de faces que compartilham
uma aresta com a face F; (Sun et all, 2007)

No contexto de malhas, a vizinhanga 1-anel de um vértice V;, denotado Ny,
€ o conjunto de vértices conectados com V; por uma aresta. E a vizinhancga 1-
anel da face F; pode ser definida de duas formas: como o conjunto de faces que
compartilham um vertice com a face F;, denotado N},, ou como o conjunto de
faces que compartilham uma aresta com a face F;, denotado N, (Figurap3). O
conjunto de faces que compartilham um mesmo vértice V; é denotado Fy,. E o
conjunto de arestas de uma face é denotado OF.

As normais em malhas triangulares sao estimadas para cada face como o pro-
duto vetorial normalizado de duas arestas. A normal da face F} é:

(% — %) X (% — %;)

= , 2.7)
M = %) % (=) *7

onde Xx;, X; e X;, s3o os vértices da face F.
A seguir descrevemos os passos envolvidos na suavizagao em dois passos para

malhas triangulares.

2.4.1 Atualizacao das Normais

Existem varios métodos para atualizar as normais. A maioria deles realizam um
0

processo iterativo, sendo n! a normal na iteragdo /, com n{ a normal estimada
como visto na Equa¢do (.7). Sumarizamos a seguir os principais métodos en-

contrados na literatura. Uma discussao mais profunda dos métodos pode ser

14
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encontrada em Sun et al! (2007).

Um dos métodos, proposto por [Yagou et al] (2002), calcula a nova normal se-

gundo um peso dado pela média da darea das faces:

l

1
n=——— Amlt (2.8)
ZJGNI«; Aj jEZN':]i ’

onde A; é a drea da face j, e n; é a normal da face j.

Outra abordagem, proposta também por [Yagou et all (2002), atualiza a normal
da face F; tomando a mediana dos dngulos entre a normal da face F; e as normais

das faces vizinhas:

n = argmédian{w; © Z(n{"" n/") : j € N7;} (2.9)

-1
n.
J

onde w; ® Z(n{~",n’!), indica que o 4ngulo no cdlculo da médiana se repete w;
- , -1 ~ . L -

vezes, e arg medlann§_1 {-} é anormaln; " para a qual obteve-se o angulo médiano.

Uma estrategia que pode ser usada no calculo do peso ¢ atribuir peso 1 a todos os

-1 -1y . -

ng ) ije N e

angulos. Outra estrategia € atribuir peso 2 aos angulos Z(n;

peso 1 aos demais angulos de N7,.

Outra técnica de atualizagio de normais, proposta por [Yagou et all (2003, é

alpha-trimming:

n! = normalise Z Lo(j)Am ! (2.10)
JENT,
1 -1

onde I,,(j) é um indicador igual a zero quando o dngulo /(n}~ ,n; ) encontra-

se na propor¢ao « superior ou inferior de todos os dngulos em L(nﬁ‘l, né-_l) e
normalise(x) é o processo de normalizar x:
. X
normalise(x) = Tl (2.11)
X

15
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Sun et al] 2007) propéem um método baseado em um limiar:

n} = normalise g hjnz_l (2.12)
JENT,

onde h; é uma fun¢ao de pesos definida como:

T
(2.13)
T

onde 0 <7 <1 ¢ um limiar proposto pelo usuario.

Zheng et al] (zo11) apresenta um método baseado na filtragem bilateral para

definir o peso das normais na vizinhanga N7, de F;:

n| = normalise | Y W(|lc/™ — &7 [NWi([nl™" — 07!’ (2.14)
JENT,

onde ¢; é o centroide da face F;, W, e W, sao fun¢des Gaussianas, W, é o peso
espacial que penaliza a distincia entre os centroides e W, é o peso do angulo que

penaliza a distancia das normais das faces vizinhas.

Wang et all (2012) propéem um método que combina um filtro bilateral com

um limiar calculado adaptativamente:

n) = normalise Z We(||ct — cé_1||)VVS(nl-_1,né-_l)nlf1 (2.15)

T
JENT,

onde W, é uma fun¢io Gaussiana e W,(n;, n;) é:

0 se (m;—n;) -n; >7T
Ws(n;,n;) = ( s) (2.16)

[(m; —m;) -n; — T}, caso contrario
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e T' é um limiar calculado adaptativamente:

- \/ZjeNIiKni —n;) -n
B HNIZ

T (2.17)

2.4.2 Atualizacao dos Vértices

Algoritmos para atualizar os vértices de modo a corresponder com as normais
corrigidas, tem sido propostos. [laubin (2001) propds um sistema de equagdes

simultaneas baseado na ortogonalidade entre a normal e as arestas de cada face

f da malha triangular:
n; (x;—x;) =0
n;-(x,—x;) =0 Vf=(ijk) (2.18)
ny (XZ' — Xk) =0

Taubin (2oo1) mostrou que o sistema de equagdes nao tem solugdo trivial, e
prop0s resolver as equagoes no sentido dos minimos quadrados, minimizando o

€Iro:

e(X) = Z Z (0, - (x; — x;))° (2.19)

keF (i,j)€0F}

O método do gradiente pode ser utilizado para minimizar o erro, assim, a atu-

alizagio dos vértices é definida:

X = x; + A Z Z n, '(n . (Xé»_l —xi71) (2.20)
onde A > 0 é o tamanho do passo na iteragao.

Ohtake et all (2001) propuseram utilizar o método do gradiente para minimizar

7
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o erro levando em conta a drea de cada face:

) =3 > Alm(x—x,)° G.2)
kEF (i,j)EOF}
com passo A =1/6> ;o Ay

Assim, a equacao de atualizacao dos vértices é:

] 1

x =x"1+

Z Apny(ny, - (X1 —x71) (2.22)

3
EkGFviAk JENY; (i,5)€OF

Sun et all (2007), observaram que numa face com drea grande geralmente os
vértices encontram-se afastados, entio, a influéncia da face na atualizacido do
vértice deve ser menor. Por isso, propuseram uma modificagao do algoritmo de
Ohtake et al] (z001), substituindo os pesos dados pelas dreas das faces por um:

x =x"'+ LI Z Z n(n; - (X7 —x71) (2.23)

J
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Capitulo

Suavizacao de Superficies
Representadas por Nuvens de Pontos

3.1 Consideracoes Iniciais

Muitos métodos tem sido propostos para suavizar superficies tanto para malhas
quanto para nuvens de pontos. Apesar disso, a pesquisa nesta area continua ativa
pois suavizar superficies mantendo as fei¢bes (curvas nas superficies que contém
as caracteristicas visuais mais proeminentes) é ainda um problema sem solucdo
definitiva.

O objetivo da suavizagao de superficies é remover ruido, mantendo as fei¢ces
subjacentes, tanto quanto possivel. Muitos métodos desenvolvidos para malhas
de tridngulos inspiraram variantes no contexto de superficies representadas por
nuvens de pontos, que é o foco principal do trabalho aqui desenvolvido. Espe-
cificamente, no contexto de superficies representadas por nuvens de pontos, as
técnicas de suavizagao tem experimentado um progresso importante na ultima
década. As técnicas existentes, variam consideravelmente quanto a base mate-
matica, abrangendo metodologias derivadas da teoria espectral, mapa de difuso,
operadores de projecao e filtros bilaterais.

Neste capitulo apresentamos as principais técnicas para suavizac¢ao de superfi-
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cies representadas por nuvens de pontos encontradas na literatura.

3.2 Técnicas Espectrais

Técnicas baseadas em filtros espectrais para imagens inspiraram variantes no con-
texto de superficies definidas por nuvens de pontos. Assim, foram propostas va-
riacoes de técnicas existentes, impulsadas principalmente pelo desenvolvimento
de métodos robustos para discretizar o operador Laplace-Beltrami em nuvens de
pontos.

Pauly et al] (2002) foram uns dos pioneiros em utilizar os operadores de Laplace
para realizar suavizagdo de nuvens de pontos, manipulando coeficientes espec-
trais e realizando um processo de difusao. O processo de difusao de Pauly et al.
pode ser descrito como:

aS

onde A denota o operador Laplace-Beltrami na superficie. Usando integracao

Euleriana, chegamos na suavizacao:

p, =p, "+ \dtAp;, G.2)

onde Ap; é alguma discretizacao do operador Laplace-Beltrami no ponto p;.

A abordagem usada por Pauly et al] (2002) cria uma descomposi¢io da nuvem

de pontos usando o operador umbrella como mecanismo de discretizacao:

1
Api =5 wilp;—pi), G3)
& JEN

onde w; define o peso do ponto p; na vizinhanga de p;. Se o peso é um, o opera-

dor é conhecido como umbrella uniforme. O peso também pode ser definido em

relacdo a distincia do ponto p; ao vizinho p;: w; = 1/||p; — pil|- 2 € o termo de
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low pass filter -

- ('\

original model

Figura 3.1: Suavizagdo do modelo Armadillo utilizando um filtro passa baixo
na decomposi¢io espectral do operador Laplace-Beltrami basedo em
SPH. O processo nao consegue preservar fei¢oes (extraido de
netto et al] (2o13)).

normalizacao:

1
Q-1 G.4)
D jen Wi
Um problema conhecido da discretizacao umbrella do operador Laplace-Beltrami

¢ o encolhimento do modelo, ou seja, a perda de volume. Algumas técnicas fo-

ram propostas para resolver esse problema, Desbrun et al! (1999) calculam o fator
de encolhimento e redimensionam a superficie apds cada iteragao.
(2002) calculam o fator de encolhimento localmente e deslocam os pontos para

compensar a perda de volume.

Lange & Polthier (2004) utilizaram uma versao anisotrépica do operador La-

place para detectar a curvatura média. Seu método soluciona uma equagao de de-
rivadas parciais (EDP) com condi¢es de borda. A abordagem consegue suavizar
uma nuvem de pontos além de preservar e realcar feicdes durante o processo de
suaviza¢ao. Uma desvantagem desse método é que precisa de muitas iteragbes e
de um pariametro definido pelo usuirio conhecido como quociente de borda que

permite realgar as regides com alta curvatura.
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Belkin et all 2009) propuseram uma discretizagao do operador Laplace-Beltrami
para nuvens de pontos. Para isso, construiram um patch ao redor de cada ponto
usando uma triangulacao Delaunay local, empregando um kernel de calor em cada
patch. Provaram a convergéncia do operador Laplace-Beltrami proposto. Uma li-
mita¢io desse método é que precisa de uma densidade alta na nuvem de pontos.
Além disso, a construgio local de uma triangulagao aumenta a complexidade do
processo.

Recentemente, Petronetto et al] (2013) exploraram as propriedades espectrais
da discretizacao do operador Laplace-Beltrami baseado em SPH. A vantagem
desse método é que nao precisa de uma malha nem localmente, diferindo de mé-
todos propostos anteriormente. Petronetto et al. conseguiram suavizar nuvens
de pontos utilizando a decomposi¢ao espectral do operador, mas, sem preserva-

¢do de fei¢oes (Figura B.1).

3.3 Técnicas de Projecao

As técnicas de proje¢ao estdo inspiradas no método de aproximagao
(MLY), que estd baseado no método de minimos quadrados (LS). O mé-
todo LS para superficies de pontos busca encontrar uma funcio linear f(x;) =
cp + c1x que aproxime a superficie. Para isso, busca encontrar os coeficientes
o, ¢1 que minimizem a soma dos quadrados das diferencas entre os valores da

tuncao e dos dados originais:

mine, o, (Y (pi— f(x)°) . Gs)

onde p; sao os dados originais da nuvem de pontos.

Enquanto o método de minimos quadrados resulta numa solu¢ao global, [Mo{

ing Least Squares (MLS) aproxima os dados localmente. O método [MLS foi pro-

posto originalmente por [Levin (1998) e surgiram muitas variaces que podem ser
classificadas em superficies implicitas e superficies de projecoes.

Proposto inicialmente por Alexa et al] (2003), os operadores de projec¢do con-
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(@ b)
I'—
S \‘\
Ve f
(©

Figura 3.2: Processo de projeciao do MLS. [a) Primeiro, um plano H é aproximado
ao conjunto de pontos usando minimos quadrados. [b) A proje¢do do
ponto r no plano H define a origem q do dominio local de referencia.
Utilizando esse dominio, um polinémio ¢ é aproximado, novamente
usando minimos quadrados. Finalmente, o ponto é projetado no
polinémio g.

seguem suavizar as nuvens de pontos. A ideia principal é definir um esquema
de projecao de forma que um ponto préximo a nuvem de pontos seja projetado
em uma representa¢ao suave da superficie. Tipicamente, o esquema de projecao
pode ser dividido em dois passos: encontrar um plano e depois aproximar um
polindémio (Figura §.2).

No primeiro passo, calcula-se um plano H = {x | (n-x) — D = 0,x € R3},
com origem em D e normal n € R?, ||n|| = 1, associada ao ponto r € R?. H €
calculado minimizando a soma ponderada do quadrado das distincias dos pontos
p: 2o plano. Os pesos pertencentes a p; sao fun¢oes da distancia de p; a projecao

de r no hiperplano H:

n

S ((n-pi) - DYu(llp; - ql). (.6)

i=1
onde q a projecao de r em H e w é uma fungao monotonicamente decrescente.

O sistema local de coordenadas definido por H é usado para calcular uma apro-
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ximagao polinomial local da superficie na vizinhanga de r. Os coeficientes sao

calculados minimizando:

n

> (9xiys) = £ w(llp: — qill) 3.7)

i=1
onde (x;,y;) é a representagao de q; no sistema local de coordenadas, q; é a pro-
jecao de p; em H e f; é a altura de p; sobre H.

Diferentes enfoques foram propostos para controlar cada passo. Guennebaud
& Gross (2007) propuseram usar ajustes nao polinomiais no segundo passo do
esquema. Para isso, eles propuseram uma abordagem algébrica para ajustar uma
esfera em vez do plano H. A solugao algebrica para encontrar o vetor de coefici-
entes u(r) = [ug, ..., us] € R que definem a O-isosuperficie de uma esfera para

um ponto r € R® pode ser expressa como:

u(r) = argmin HW1/2(1')DuH2 : (.8
u,u#0

onde W ¢é a matriz diagonal de pesos n x n e D é a matriz n x 5 definida:
L pi PoPo
D=: : : (3.9)

T T
a pn—l pn—lpr—l

Para evitar a solugio trivial u = 0, usaram a restri¢ao de Pratt que fixa a norma
do gradiente na superficie da esfera unitaria como sendo um.

Pela natureza de suavizacao do [MLS, as técnicas descritas anteriormente nao
conseguem solucionar o problema de manter as fei¢es afiadas. Porém, as super-
ficies podem ser vistas como compostas de patches separados por feicdes. Por-
tanto, pontos pertencentes a outros patches podem ser considerados outliers. Com
essa ideia, [Fleishman et al] (2005) propuseram uma técnica baseadas em estatis-
tica robusta que consegue lidar tanto com fei¢oes afiadas quanto com outliers
reais. Uma desvantagem desse método, além do custo computacional, é que ele

requer uma alta densidade de pontos na nuvem. Por outro lado, considerar as fei-

24



3.4 Técnicas Baseadas na Norma l,

¢Oes afiadas como outliers nao permite um modelo estatistico especifico para mo-
delar as fei¢bes. Daniels et all (2007); Lipman et al] (20074) conseguiram modelar
as fei¢oes afiadas com maior flexibilidade, porém no contexto de reconstrugio de
superficies e nao para suavizagao.

Oztireli et all (2009), baseados em técnicas de estatistica robusta, conseguiram
suavizar as nuvens mantendo as fei¢des sem necessidade de uma segmentacao

previa. Especificamente, mostraram a relagdo entre [MLY e regressao local via
kernel (LKR) .

3.4 Técnicas Baseadas na Norma [;

A origem dos métodos baseados na norma /; é o algoritmo de Weiszfeld para a
solu¢ao do problema de localizagao de pontos de Fermat-Weber. O problema,
também conhecido como a mediana multivariada /;, € utilizada em dados mul-
tivariados para gerar uma representacdo de grandes conjuntos de amostras na
presencga de ruido e outliers. O problema foi inicialmente conhecido como o pro-
blema de Weber & Friedrich (1962) e o objetivo era encontrar uma localiza¢ao
6tima para um local industrial minimizando a soma das distdncias a locais exis-
tentes. O problema foi depois rastreado ao trabalho de Fermat no século XVII
e assim foi conhecido como o problema de Fermat-Weber.

Dado um conjunto de dados, a mediana [; é definida como o ponto q que mi-

nimiza a soma das distancias Euclidianas aos pontos:

q=argmin{ > [pi—x| ¢, (3.10)
x i=1

onde p; sao os dados originais da nuvem de pontos e x; é um conjunto arbitrario
de pontos.

Lipman et al] zoo7b) desenvolveram um operador de projecio livre de para-
metrizacoes localmente 6timo (COP) que esta relacionado com a mediana /1. O

objetivo é encontrar um conjunto de pontos Q = {q;,} que aproximem a geome-
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tria subjacente da nuvem de pontos P:

Q=G(9), (3.11)

onde:

G(C) = argmin{Ey (X, P,C) + Ey(X,C)},

fEE{xj}

(X, P,C) ZZHX] pillo(lle; — pill), (3.12)

7j=1 =1
n

=30 D0 K - e odliel - ¢,

j=1 i=1,i#j

onde # e 7 sao funcbes decrescentes:

O(r) = eI (r) = — (3.13)

onde h € o raio de suporte definido pelo usudrio.

Na Equagio (.12, F, minimiza a soma ponderada das distincias dos pontos q;
aos pontos p; em relagao aos pesos radiais com centro no conjunto de pontos Q.
E, pode ser vista como uma versao local da fun¢io de custo B.1d. E; busca que

0s pontos ; nao estejam muito proximos entre si.

Finalmente, dado um parimetro de repulsio i € [0, 1/2), definem um processo

iterativo para atualizar as posicoes de cada ponto:

J
y = sz ot Z -x;) ﬁ (.14)

J'=13"#3
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3.4 Técnicas Baseadas na Norma l,

Figura 3.3: Comparac¢io das técnicas baseadas na norma /;. De esquerda a direita:

nuvem de entrada, resultados de [LOP, \WLOP e FLOP (extraido de

Liao et al! (2o13)).

-/ -/
onde o e 3] sdo respectivamente:

St

- pil))

! e xé?lH or "

||X]/

||x§~71

- pill (.15)

%)

Huang et al! (2009) propuseram uma otimiza¢ao ponderada localmente 6tima

(WLOD). Observaram que para nuvens nio uniformes, LOP tende a gerar proje-

¢bes com acumulagio de pontos onde a nuvem original é mais densa. Para solu-

cionar esse problema, modificaram o processo iterativo para atualizar os pontos

proposto por Lipman et al. (2oo7b) (3.14):

a /UJ _xl!
Z"’ S (ol Joy > b

J'=14'#j

-/
wﬁl_ ! 51,

l i/ )
Zn’lfl ]’#]( ! /BJJ )

(3.16)
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onde v;, w} s30 os pesos de densidade:

vi=1+ Y fllpi—psl

i'=1,i'#i

wi=14 ) 6l = x5

J=1j5'#]

G.17)

Além disso, propuseram mudar o termo de repulsio (§.13), de modo a produzir

uma distribui¢ao mais regular:

n(r) = —r. (3.18)

Liao et al| (2013) observaram que ambos os métodos, [LOP e WLODP, além de ser

computacionalmente complexos, ndo conseguem preservar fei¢oes afiadas (Fi-
gura B.3). Inspirados nos filtros bilaterais, propuseram uma proje¢io localmente

6tima que consiga preservar feicoes (FLOD). Para isso, mudaram F utilizado em

LOB G.12):

m n

E\(X,P,C) =) ) I — pillbs(le; — pill)6r(n; - (c; — i), Gxo)

j=1 i=1

7,,,,2/20.% al. . _ . . d _
peénaliza a varia¢ao na geometrla, conseguindo pre

onde o peso 6,(r) = e
servar fei¢Oes afiadas.

Outra desvantagem de LOP e WLOB, é que o raio de suporte h tem que ser

fornecido pelo usudrio por tentativa e erro. Por isso, Liao et all (2013) propuseram

um raio de suporte localmente adaptativo:

1y = T (& PVl ),

(3.20)

2 2 .2 2 . _
onde 0.(r) = e /%% e 0,(r) = e /277, sd0 as Gaussianas padrdo. A constante
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3.5 Outras Técnicas

Figura 3.4: Suavizacao de nuvens de pontos usando elementos finitos. Na fila su-
perior mostram-se as nuvens de entrada e na fila inferior, as nuvens
suavizadas. A abordagem nao consegue preservar fei¢oes (extraido de
Clarenz et all (20044)).

R define o raio de influéncia para cada ponto ¢;, S; é o nimero de pontos na

vizinhanca.

3.5 Outras Técnicas

Clarenz et al] (20044,b) apresentaram uma abordagem para suavizar nuvens de

pontos baseada em equagdes diferenciais parciais (EDPs) via elementos finitos.
Propuseram construir matrizes locais baseados em triangula¢es de Delaunay
para, posteriormente, montar uma matriz global que permite a discretizagio das
EDPs. Depois disso, realiza um processo iterativo de difusao para solucionar um
sistema de equacOes anisotropicas e calcular a superficie suavizada. Porém, no
processo, perdem-se as fei¢bes afiadas (Figura .4).

Outras técnicas para suavizar nuvens de pontos, baseadas na média nao-local

(Buades et all, 2003), foram propostas por Guillemot et al] (2012); Schall et al]

(2007). Schall et al] (2007) propéem um filtro bilateral, onde um dos pesos pena-

liza a distancia dos pontos e o outro peso, chamado peso de similaridade, compara

a semelhanca entre as vizinhangas geométricas.
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Capito &
Capitulo

Filtragem de Nuvens de Pontos por

Correcao de Normais e suas
Variantes

4.1 Consideracoes Iniciais

A metodologia proposta para remover ruido da nuvem de pontos é composta de
trés passos: estimacao de normais, filtragem de normais e atualiza¢ao de pontos.
O primeiro passo fornece uma normal estimada para cada ponto. Posteriormente
realizamos um passo de filtragem de normais, pois a normal estimada pode ser

afetada por ruido presente nas coordenadas dos pontos. Finalmente, atualizamos

4
/4
\ fl
\
ok %
//’
~
g / 4
"o
] Gaussian | Mixed Point Update
Normal Estimation

Figura 4.1: Pipeline do processo de filtragem de nuvens de pontos e as variantes.
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Capitulo 4 Filtragem de Nuvens de Pontos por Corregdo de Normais e suas Variantes

as posicoes dos pontos para corresponder com as normais filtradas.

Em cada um desses passos, existem varios métodos que podem ser usados. Os
passos de nossa abordagem e os métodos usados sao ilustrados na Figura [.1. Re-
alizamos iteragbes nos passos de filtragem de normais e atualizacao dos pontos.
Temos duas op¢oes para realizar essas duas etapas, podemos realizar [ iteracoes
de ambos os passos, um ap6s o outro (Algoritmo ). Também podemos realizar /
iterac6es no passo de filtragem de normais e posteriormente m iteragdes no passo
de atualizacao dos pontos (Algoritmo ). Apesar de aumentar um parimetro no
processo, adotamos a segunda op¢ao, ja que desta forma a atualizagao dos pontos
é baseada nas normais corrigidas (que espera-se que sejam Gtimas).

Input: /

fori=0to!do

Realizar um passo de filtragem de normais;
Realizar um passo de atualizagio dos pontos;

end
Algorithm 1: Alternativa de implementacao do algoritmo de dois passos.

Input: [, m
fori=0to!do
‘ Realizar um passo de filtragem de normais;
end
for : = 0tom do
‘ Realizar um passo de atualizagio dos pontos;
end
Algorithm 2: Alternativa de implementagio do algoritmo de dois passos.
Neste capitulo apresentamos os detalhes da fundamentacao teérica e compu-
tacional usadas para implementar cada passo do processo de filtragem. Na Sec-
¢ao §4.2 apresentamos trés diferentes mecanismos que podem ser usados para
estimar as normais em uma nuvem de pontos. Na Sec¢ao §l4.3 fornecemos uma
descrigao das trés abordagens usadas para filtrar as normais. E na Seccao §j.4

descrevemos o método proposto para realizar a atualizacao dos pontos.
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4.2 Estimativa de Normais
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(@) Conjunto de pontos sem ruido. (b) Conjunto de pontos com ruido.

Figura 4.2: Estimacao da normal n; para o ponto p; usando PCA|. Sao mostradas
as componentes principais C'P; e C'Ps.

4.2 Estimativa de Normais

O problema de estimativa de normais, descrito em Secgao §p.2.1, visa ter uma

normal n; para cada p;. Investigamos trés métodos para estimar o conjunto de

normais: pnalise de componentes principais (PCA), analise de componentes prind
cipais ponderada (WPCA) e transtormada de Hough aleatoria (RH'T).

4.2.1 Analise de componentes principais (PCA)

Quando tem-se uma superficie suficientemente densa, a nuvem de pontos reflete
a estrutura da superficie. Assim, espera-se que a vizinhanga dos pontos esteja
distribuida préximo ao plano tangente. Motivado nisso, uma das aplica¢bes do
[PCA| é a estimagio de normais. Pearson (19o1) mostrou que a tltima componente
principal de um conjunto de pontos é ortogonal ao plano que melhor aproxima o
conjunto. Assim, para estimar a normal n; calculamos as componentes principais
do conjunto de pontos na vizinhanca de p;, de modo que a ultima componente
principal corresponde a normal n;.

Na Figura [4.3, ¢ mostrado um exemplo de estima¢ao de normais usando PCA|
para dois conjuntos de pontos amostrados em uma semi-circunferéncia: o con-
junto sem ruido na Figura [¢.2d, e, na Figura [f.2H, o conjunto com ruido.

Para calcular as componentes principais, construimos uma matriz de covarian-
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\ n/l f \ n/l f /
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\ /

cp, CP

(@) Conjunto de pontos sem ruido (b) Conjunto de pontos com ruido

Figura 4.3: Estimacao da normal n; para o ponto p; usando [WPCA|. Sao mostra-
das as componentes principais CP; e C'P;.

cia para os pontos p; na vizinhanga de p;. De modo que, a dltima componente
principal corresponde 2 menor covariincia (o autovetor associado a0 menor au-
tovalor).

Os k vizinhos mais préximos de p; definem a vizinhanga usada para construir a
matriz de covaridncia. O tamanho da vizinhanca, dependendo do nivel de ruido

influencia a normal estimada. Por isso, fazemos testes variando o tamanho da

vizinhanga, os quais sao discutidos no [Capitulo 4.

4.2.2 Analise de componentes principais ponderada (WPCA)

WPCA| é uma extensio de [PCA| e também pode ser usado para estimar normais.
WPCA| é similar a [PCA|, salvo que uma fung¢io de pesos é usada para definir a
contribui¢io de cada ponto na constru¢ao da matriz de covaridncia. Mais espe-

cificamente, a matriz de covariincia C; associada ao ponto p; ¢ definida por

C, = XWX', (4.0

onde X ¢é a matriz com colunas formadas pelas coordenadas dos pontos na
vizinhanga de p; e W é uma matriz diagonal com entradas w,; diferentes de zero,
correspondendo ao peso associado ao ponto p .

Em nossa implementago, o peso associado a cada ponto p; é dado pela inversa

da distdncia euclidiana entre p; e p;. Apesar do bom desempenho do [WPCA|em
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(a) Normais mapeadas na esfera (b) Normais mapeadas em um
unitaria acumulador

Figura 4.4: Normais dos planos selecionados aleatoriamente na vizinhanca de p;.

aplicagdes como agrupamento ou classificagio, nao foi encontrado na literatura
trabalhos que a usem para estimar normais.

Na Figuralg.3, ¢ mostrado um exemplo de estimag¢io de normais usando [WPCA|.
Ilustramos dois conjuntos de pontos amostrando uma semi-esfera: o conjunto

sem ruido na Figura [4.3d e o conjunto com ruido na Figura [4.3H.

4.2.3 Transformada de Hough aleat6ria (RHT)

O uso da [RHT] foi proposto por Boulch & Marlet (2012) como um mecanismo
robusto para estima¢ao de normais. A ideia é selecionar 7' triades de pontos
na vizinhanga de cada ponto p,. Cada triade define um plano e cada plano tem
uma normal unitdria com origem no ponto p,. Assim, para cada ponto temos um
conjunto de T" normais (Figura [4.4).

As esferas unitdrias com centro em cada p; sdo discretizadas em bins (Figura [g.45).
Ap6s, contamos (processo de votag¢ao) o nimero de normais que caem em cada
bin. Finalmente, se seleciona o #in com mais votos.

No caso dos pontos em R, a discretiza¢io da normal é obtida transformando-

a para o espaco de Hough. Boulch & Marlet (2012) propdem usar o acumulador
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Figura 4.5: Acumulador esférico de Borrmann, com ny fatias e 2n, b7ns no equa-
dor (extraido de (Boulch & Marlet, 2o12)).

esférico de Borrmann (Figura [4.3).

O nimero de planos a serem selecionados para que a normal estimada seja con-

fiavel é definido por:

T

(2
T2 %\1 4 )

onde « ¢é a probabilidade minima tolerada, tal que a distancia entre a distribui-
¢ao teodrica e a distribui¢do observada seja no maximo 6. Assim, por exemplo,
sendo § = 0.07 e a = 0.95 e ny = 5, temos 23 bins (M = 23):

1 2(23)
Ty = 1 ~ 700
" 200072 (1 - 0.95)

Este nimero pode ser diminuido, deixando de selecionar planos quando vo-
tamos repetidamente pelo mesmo &in. Ou seja, quando nao existir interse¢ao
entre os intervalos de confianca de dois b7ns. Isto é, quando a diferenca entre os
intervalos de confianga é maior que 21/1/T (Figura [{.6).



4.3 Corregdo de Normais

Pm

Figura 4.6: Os intervalos de confianga dos bins mais votados (p,,,, € pi,,) ndo se
intersetam.

4.3 Correcao de Normais

As normais estimadas, usando qualquer um dos métodos na se¢ao anterior, po-
dem nio ser suaves devido ao ruido no conjunto de pontos. Por isso, o segundo
passo de nosso pipeline é o passo de filtragem de normais, com o objetivo de ob-
ter um novo campo de normais filtradas N’ = {n! € R? ||n!| = 1}. Usamos
um enfoque iterativo, andlogo ao usado em malhas, para filtrar as normais. Mais
especificamente, calculamos a média ponderada das normais na vizinhanga do

ponto p;:

-1
l (Zjefw wym, )

n.

()l

onde N; considera os k vizinhos mais préximos de p;, n é a normal obtida na

(4.2)

iteragdo [, sendo n{ € N a normal estimada, e w; é o peso usado para definir a

contribui¢io de cada normal. Sendo || (Z JeN; wj> || o fator de normalizagio.
Os métodos de filtragem de normais diferem principalmente na escolha dos

pesos w,. Investigamos, trés métodos para filtrar as normais, um deles baseado

em um esquema de limiariza¢ao, outro baseado em um filtro bilateral e o terceiro
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) (b) (©

Figura 4.7: Proje¢ao da normal n; em n;, dada por n; - n; para trés angulos dife-

rentes: (@) 80°, (b) 50° e [c) 20°.

baseado em um esquema misto, isto é, uma filtragem bilateral usando limiares.

4.3.1 Pesos Limiarizados

Sun et al] (2007) propuseram um esquema iterativo simples para filtrar as normais.
Este esquema é baseado em um limiar para definir o peso w; na Equagao (4.2). O

peso é calculado da seguinte forma:

0 , lflll . LY S T
w; = I (4.3)
(n; -n; — T)? |, caso contrario

onde 0 < 7" < 1 ¢é um limiar definido pelo usudrio. Este limiar corresponde a
um 4ngulo maximo tolerado entre as normais n; e n;. Ou seja, se a projecao de n;
em n;, dada por n; - n;, for menor que 7' a normal no é considerada no calculo
da normal filtrada (Figura [.7).

O limiar 7" usado neste trabalho é 0.65. Para um 4ngulo grande a projecao de
n; em n; ¢ menor do que o limiar 7" usado, como é mostrado na Figura [4.74. Por-
tanto, nesse caso, como expresso na Equacgio (§.3), o peso w; é zero. O angulo
maior para o qual w; é zero, é aproximadamente 50° (Figura [f.7d). Finalmente,

a projecdo de n; em n; é maior do que o limiar 7" para um 4ngulo pequeno (Fi-
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- 2 . . A .
gura [4.70). Nesse caso, a func¢do decrescente (n; - n; — 7')? penaliza a divergéncia

das normais n; e n;.

4.3.2 Peso Bilateral-Gaussiano

Zheng et al] (2011) apresentaram, no contexto de malhas, um esquema de corre-
¢ao de normais baseado em um filtro bilateral. O filtro bilateral, originalmente
proposto por [fomasi & Manduchi (1998), é comumente usado em redugao de

ruido em imagens. O peso do filtro bilateral para reduzir o ruido em imagens é
definido:

w; = We(llp — al)Ws(llg(p) — g(@)) , (4.4)

onde ¢ s30 os pixeis na vizinhanca do pixel p.

O peso consiste em duas partes: W, é uma fung¢do monotonicamente decres-
cente da distincia entre p e ¢, enquanto Wy, que representa a diferenca de inten-
sidade, é uma fun¢io monotonicamente decrescente da diferenga de sinais entre
p e ¢. Medir a diferenca de intensidade permite que o filtro preserve features.

Este esquema serve como base do mecanismo proposto por Zheng et al] (zo11),

mostrado a seguir:

w; = We(llpi — pi|DWis([ s — nyl]) (4.5)

Este esquema, similarmente ao filtro bilateral para suavizacao de imagens, tem
duas partes. W, corresponde a distdncia entre os pontos p; e p; ¢ W, define a
diferenga de sinais simplesmente como a distancia entre as normais n; e n;. W,

e W sao fungoes Gaussianas definidas como:

Wi(x) = exp(~2%/20%),  Wi(x) = exp(—a?/20?)., (+.6)

onde o, 0, sdo o desvio padrao das Gaussianas. No contexto de malhas o,
foi definido como a média do comprimento das arestas incidentes num vértice.

Seguindo esse raciocinio, definimos o, em relagao a distincia média de p; aos p;
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n; n; [ln; —nj || = 0.35

n; Ws = 0.51
lln; = nyf =1 —

= n;
W, = 0.004

lln; —ny|| = 1.20
W, = 0

Pi jﬂ/ Pi Pi
(@ (b) (©)

Figura 4.8: Distincia entre os vetores m; e n;, e valor da fun¢ao Gaussiana
Wi(z) = exp(—2?/202) com o, = 0.3 para trés angulos diferentes:

(@ 80°, [B) 60° e [S) 20°.

na vizinhanca de p;.

Naio existe um mecanismo estabelecido para ajustar o, mesmo no contexto de
malhas. Neste trabalho, usamos o5 = 0.3 (Figura [4.8). Para esse valor, a partir de
x = 1, o valor da fun¢do Gaussiana é préximo a 0 (W(1) < 0.01). Isto representa
um angulo entre as normais n; e n; de 60° (Figura [4.9b). Na Figura [{.9d, mostra-
mos normais n; e n; com angulo de 80°, o valor de W,(1) ~ 0. Ou seja, o valor

de W, é inversamente proporcional ao angulo entre as normais.

4.3.3 Peso Bilateral-Misto

Wang et all (2012) propuseram um método que combina ambos os esquemas ex-
plicados anteriormente, usando um peso bilateral consistindo de um peso Gaus-
siano e de um limiar.

Adaptamos o mecanismo de [Wang et all (2012) ao contexto de nuvens de pontos

como segue:

w; = We(||pi — pjl])Ps(ms, 1) , (4.7)

onde WV, é um peso Gaussiano, definido como na Equacao (4.4). E @, é a parte

que define a diferenca de sinais, dada por um peso limiarizado calculado adapta-
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n; n; n;
— 1y
n;
15,
Di Di / | o
(1’17‘, - n]‘) sn; = 0.500 (1’17‘, - l’l]‘) sn; = 0.212 (ni — l’lj) sn; = 0.034
&, = 0.000 o, = 0.001 o, = 0.047
(2 (b) ©

Figura 4.9: Projecao do vetor n, —n; no vetor n, e valor do peso ®; com 7" = 0.25
para trés angulos diferentes: [a) 60°, (b) 38° e [c) 15°.

tivamente da seguinte forma:

0 Jif(n, — ) -n, >T
q)s(nianj) = ( ]) i ) (48)

(m; — ;) -n; — T)* | caso contrario

onde T = o ((n — -niQ k, e k é o nimero de pontos em N;.
JEN; j P

Os métodos descritos anteriormente nao funcionam corretamente quando as
normais nio estio orientadas de forma consistente, como ilustrado na Figuray.1d.
Porém, dado que estes métodos dependem de um procedimento local para filtrar
as normais, unicamente necessitamos garantir a consisténcia local. Em outras
palavras, o filtro pode ser aplicado invertendo as normais na vizinhanga n; se
n; - n; < 0. Este procedimento nao garante um campo de normais orientado de
forma consistente no contexto global. No entanto, isso nao supoe um problema

em nossa formulacao.

4.4 Filtragem da Superficie

Depois de obter o campo de normais filtrado, temos que atualizar os pontos para

corresponder com o novo campo de normais N'. Sun et all (2007) propuseram
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Capitulo 4 Filtragem de Nuvens de Pontos por Corregdo de Normais e suas Variantes

(@) As normais estimadas podem ter orienta¢des in-

K\\%\\@M % @Q\X&W ﬁ

Figura 4.10: [(b) Filtragem sem levar em conta a orienta¢ao das normais e [c) ori-
entando as normais localmente de forma consistente.

um esquema iterativo para atualizar os vértices de uma malha de acordo com um
novo campo de normais. Uma das vantagens dessa abordagem é que nao requer
calculos da area da superficie, que é dificil estimar usando nuvens de pontos.

Alem disso, as normais nao precisam estar orientadas de forma consistente.

Baseado neste esquema, propomos um método iterativo para atualizar os pon-

tos.

— ]- / — —
pi=p; "+ S w, Z n; (w;n]; - (Pé' f-pi ), (4.9)

3eN Y3 e

onde p! € o ponto na iteragdo [*, e p! é o ponto do conjunto original P.

Este processo de atualizagio de pontos, Equagio (4.9), pode ser visto como um
deslocamento baseado em pesos ponderados pelas normais n/; € N;. Os pesos

sao definidos como wjn;.(pé_l —p.™), onde w; é definida usando um mecanismo
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4.4 Filtragem da Superficie

bilateral:

w; = We(|[pi — psl[)Ws(1 — (ni.my)) (4.10)

onde W, e W sdo fun¢des Gaussianas como na Equagio (4.6), com desvios pa-
droes 0. = max;en; (||p; — pjll) e o5 = 1/3. Com W,, conseguimos penalizar a
influéncia de pontos p; afastados de p,. Enquanto que com W, controlamos a
influéncia de normais n; divergentes de n;, conseguindo uma difusao anisotr6-
pica.

Neste passo, para lidar com as normais n; cuja orientagdo nao é consistente
com n;, usamos a mesma estratégia de inverter as normais na vizinhanga n; se
n;-n; <0.

No capitulo seguinte mostramos a eficacia de nosso esquema de atualizagio de
pontos combinado com os distintos mecanismos para estimar e filtrar o campo

de normais.
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Capitulo

Resultados

Neste capitulo apresentamos os resultados de cada possivel implementac¢ao da

metodologia proposta neste trabalho. Mais precisamente, examinamos os resul-

tados das seguintes combinag¢des: pnalise de componentes principais (PCA) +
Filtragem de Normais por Limiar + Atualizacdo de pontos (PLA), [PCA| + Filtra-

gem de Normais por Bilateral Gaussiano + Atualizagio de pontos (PGA), PCA +
Filtragem de Normais por Bilateral Misto + Atualiza¢io de pontos (PMA),
[ise de componentes principais ponderada (WPCA] + Filtragem de Normais por
Limiar + Atualiza¢do de pontos (WPLA), WPCA + Filtragem de Normais por
Bilateral Gaussiano + Atualizacdo de pontos (WPGA), WPCA + Filtragem de
Normais por Bilateral Misto + Atualizagdo de pontos (WPMA), Transformada

de Hough Aleatéria + Filtragem de Normais por Limiar + Atualizagao de pontos
(HLA), Transformada de Hough Aleatdéria + Filtragem de Normais por Bilateral
Gaussiano + Atualiza¢io de pontos (HGA), Transformada de Hough Aleatéria +
Filtragem de Normais por Bilateral Misto + Atualiza¢do de pontos (HMA).
Além disso, avaliamos o impacto de variar o tamanho da vizinhanca em cada
passo do pzpeline, consideramos vizinhancas de 7, 15 e 21 pontos mais préximos
para cada ponto p,. O numero do lado direito do acrénimo indica o tamanho
da vizinhanga, por exemplo, PLA?7 significa que 7 vizinhos mais préximos sao

considerados nos calculos.
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Capitulo 5 Resultados

Igualmente, consideramos o nimero de iteragoes a serem empregadas durante
o passo de filtragem de normais e o passo de atualizacao de pontos. A conver-
géncia dos métodos descritos em Equagdo (4.2) e Equacio (4.9) ndo é garantida
mesmo no contexto de malhas. Portanto, na pratica, o nimero de iteracoes tem
que ser determinado a priori. Testamos o passo de filtragem de normais com
cinco numeros de iteracoes: 2, 4, 8, 16 € 32, e o passo de atualizagido de pontos
com 4 nameros de iteragdes: 5, 10, 20 € 40, 0 que resulta em vinte combinacdes.

Executamos as combina¢6es em cinco modelos com ruido sintético adicionado
aos pontos com desvio padrao o proporcional a 0.2 da longitude media das arestas
da malha do modelo original. Dois tipos de ruido sao testados: ruido Gaussiano
na dire¢ao normal(RGN) e ruido Gaussiano com dire¢ao aleatéria (RGA). Na
Figura .4 e na Figura f.5 sao mostrados os modelos usados nos experimentos, os

modelos sao: Bitorus, Elefante, Fémur, Niccolo e Fandisk.

5.1 Métricas

Podemos usar a correspondéncia um-a-um entre os pontos na superficie original
M e na superficie filtrada S para medir a qualidade do processo de suavizagao.
A saber, definimos uma métrica E, relacionada com a curvatura: primeiramente,
calculamos a diferenca da curvatura em cada ponto p; em M e S, e logo, cal-
culamos a média das diferencas. Quanto mais préximo de zero é Fj, melhor é
o processo de suavizacao. A curvatura pode ser calculada usando o operador de
variacao superficial descrito em Pauly et al] (2003a).

Comparamos também a drea da superficie do modelo original M e filtrado S,
esta métrica € usada na literatura.

Nos graficos de box plot na Figura f.1, pode se observar o desempenho de cada
uma das vinte e sete alternativas de suavizagdo de nuvem de pontos no modelo
Elefante variando o numero de iteragdes para filtragem de normais e atualizacao
de pontos. O erro varia consideravelmente para todos os métodos, mostrando

que o nimero de iteracOes afeta significativamente o desempenho. Alem disso,
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5.1 Métricas

WPTU21 [ s s mgp—Y T WPTU21 [ e T---T = F —
WPTU1S B e — + o WPTUTS e e e
WPTU7 B e + o WPTU7 [ e —E )
PTU21 [l s ———l PTU21 [ s s—
PTU15 [ o e S PTU1S - - O
PTU7 [ s — PTU7 + e ——— [ S— —
HTU21 [ s m— + HTU21 [ S ) ++
HTU15 g e s e + HTU15 - +H o+
HTU7 L e m— HTU7 - o
WPMU21 B + wemu2t | e - —— - - e e
WPMUTS | - = - - - =+ WPMU1S T e e
WPMU7 | - e - - — — — - - - WPMU7 O
PMU21 I e + PMU21 I e S
PMUIS | e - - 4 PMU1S [ s s WY
pMU7 | T - - - + PMU7 [ - - - - - - - e
HMU21 | - e - + + HMU21 e
HMUTS | - e - - - + HMU15 [ e S
HMU7 T - - - HMU7 [ e e S
WPGU21 I + weGu21 | e - - - - e - - -
WPGUIS | = - - -~ + weeuis| = -- - - S s A
A I e e + WPGU7 s
PGU21 - - - - - - - + PGU21 [ —— e N
PGUIS | o - -0+ PGU1S R
PGU7 |~ - - - =+ PGU7 | mmm - - - e - - - - - -
Heu21 | = o + + HGU21 e ]
HGU15 e e + HGU15 I s e W
HGU7 (o s e et HGU7 L P i}
0 0.2 04 0.6 0.8 12 1 12 14 16 18 2 22 24 26 28
area error curvature error
. : o
(@) Ruido Gaussiano na dire¢ao normal
WPTU21 1 yp—— T T T T WPTU21 [ e e p——T
WPTU15 - - - - - - - - - + o+ wetuis | e - - - - +
WPTU7 e R WPTU7 | - - -
PTU21 [ s — ] PTU21 [y o —
PTU15 [ s — + PTU1S - o 4 +
PTU7 Lo w— ] + o+ PTU7 ~On +
HTU21 [ s m— ] + HTU21 - Ok + +
HTU15 [ s —— e HTU15 L S s—
HTU7 B e HTU7 - - -
WPMU21 [l s s— + WPMU21 Lt s— — ]
WPMUT5 | - e - — — - - - + WPMU15 e - -
WPMU7 [ m— ] + WPMU7 [l s ]
PMU21 [ s — + PMU21 [l s— — ]
PMUIS | BT - — + PMU1S - - - — - - - -
PMU7 e + o+ PMU7 [y s e )
HMU21 |~ - - HMU21 e e + o+
HMU1S e s A + HMU1S D e e
HWU7 | - - - - + HMU7 T e
weu21 | - e - - + WPGU21 ——— ey - -
WPGU15 [ s s— e + WPGU15 Ll s ]
WPGU7 [ ] + WPGU7 Lol s ——)
PGU21 | - - - = + PGU21 I e S
PGUIS |~ - - + PGUIS I e e
PGU7 | T - + o+ PGU7 - - - - - -4
Heu21 | B - - HGU21 e +
HGU1S e e A HGU1S D
[ == L . . HGU7 Tl e e T et
0 0.2 04 0.6 0.8 12 0.8 1 12 14 16 18 2 22 24 26 28
area error curvature error

(b) Ruido Gaussiano em direc¢ao aleatoria

Figura 5.1: Avaliagao quantitativa das métricas usando diferentes combinac6es do
método de suavizacio no modelo Elefante (x10~%).

podemos ver que os métodos que utilizam [PCA| e [Iransformada de Hough aleq
com vizinhancas pequenas tendem a gerar erros menores do que
outras alternativas para o erro da area. Igualmente, para o erro da curvatura,

a estimag¢io de normais usando [PCA| e WPCA| com vizinhangas pequenas tém

melhor desempenho.

O erro da drea x curvatura é mostrado no scatter plot da Figura .3 para todas

as 540 possiveis implementagbes (9 técnicas com 3 tamanhos de vizinhangas e

20 opgoes da iteracao) para suavizar a nuvem de pontos Bitorus. Os pontos em

destaque correspondem ao melhor resultado em termos da drea (inferior direito)
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Figura 5.2: Erro médio de cada alternativa para todos os modelos variando as 27
op¢oes de vizinhanga e numero de passos por cada iteragao.

e em termos da curvatura (inferior esquerda) assim como os piores em termos
da drea (superior direita) e em termos da curvatura (superior direita). O modelo
destacado no meio na direita é um caso médio.

Considerando as 60 variagoes de cada implementagao (3 tamanhos de vizinhan-
¢as e 20 opgoes por itera¢io), na figuraf.2 mostramos os erros da curvatura média
e a drea para todos os modelos. Pode se observar que o desempenho da aborda-
gem de pesos limiarizados é melhor em relacao ao erro da drea, enquanto nio é

possivel assinalar qual é o melhor método para o erro da curvatura média.

5.2 Comparacoes com Outras Técnicas

Comparamos nosso método com [COF, WLOBP, APSS e RIMLS. Para cada um

desses métodos, testamos trés combinacbes de parimetros: o conjunto de pa-

rametros padrio e outras duas combina¢des que produziram resultados visual-

mente agradaveis. Desses trés resultados, escolhemos o conjunto que deu o me-



5.2 Comparagoes com Outras Técnicas

pior curvatura pior area

Olpsw osed

erro na curvatura

0.8
erro na area

melhor curvatura melhorarea

Figura 5.3: Scatter plot para as métricas drea X curvatura no modelo Bitorus (ruido
aleatério).

lhor resultado em relagao aos erros de area e curvatura média. O conjunto de
pardmetros para os métodos sdo: para [LOP e WLOP (raio de suporte h, i con-
trolando a for¢a de repulso), [APSS (escala do filtro, parimetro esférico), RIMLSY

(escala do filtro, nitidez) e o nosso (o0 acronimo descrito anteriormente, nimero

de iteracGes para filtragem das normais, nimero de iteracoes no passo de atuali-
zacdo dos pontos). Uma comparagio qualitativa pode ser vista na Figura f.4. Na
Tabela f.] mostramos o resultado das comparacoes, onde E4 e Ej, representam
o erro da 4rea e o erro da curvatura. Podemos observar que nosso método é bas-
tante competitivo, superando em alguns casos o método RIMLS (estado da arte

em suavizag¢ao de nuvens de pontos).
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Figura 5.4: Suavizagiao de nuvens de pontos: Bitorus com 4350 pontos, Elefante
com 24955 pontos, Fémur com 15185 pontos and Niccolo with 25239
pontos. De direita a esquerda: modelos originais, modelos com ruido
Gaussiano com direc¢ao aleatéria, e os resultados de [Locally Optimal
Projectzon (LOP), (Wezghted Locally Optimal FProjectzon (W LOP),
gebraic Fomnt Set Surfaces (APSS), Kobust Implicit Moving Least Squares

(RIMLS) e nosso método.
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5.2 Comparagoes com Outras Técnicas

Tabela 5.1: Melhor conjunto de parametros e erros

Modelo Ruido Método Parametros F, x107° E,x1073
LOP (0.14, 0.3) 53.62 0.78
WLOP (0.12,0.3) 26.45 0.72
RGN  APSS (3,05 5.59 0.49
RIMLS 5, 0.5) 424 0.24
Double Torus Nosso (PTU7, 32,5 0.59 0.31
(S| = 4350) LOP (0.9,0.4) 95.68 0.45
WLOP (0.12,0.3) 59.42 0.72
RGA  APSS G, 0.5) 23.16 0.54
RIMLS (3,05 12.39 0.31
Nosso  (WPTUzz, 4, 5) 0.22 0.34
LOP (0.07,0.4) 11.86 0.18
WLOP (0.05, 0. 5.64 0.24
RGN APSS (3, 0.75) 0.70 0.12
RIMLS 4,1 6.59 0.14
Elephant Nosso  (PGUzi, 32, %) 0.24 0.24
(S| = 24955) LOP (0.05, 0.4) 42.14 0.15
WLOP (0.03,0.4) 38.87 0.13
RGA APSS (2,1 1.57 0.09
RIMLS (2, 0.75) 1.58 0.08
Nosso (HG21, 32, 5) 0.04 0.22
LOP (0.08, 0.3) 1.22 0.21
WLOP (0.07, 0.35) 37.36 0.20
RGN APSS G, 5.76 0.10
RIMLS 4, 0.9 0.59 0.05
Fandisk Nosso (HTUz1, 16, 5) 0.02 0.08
(S = 25894) LOP (0.07, 0.35) 21.82 0.20
WLOP (0.07,0.39) 35.21 0.20
RGA APSS e, n 0.58 0.08
RIMLS (4, 0.7%) L.13 0.08
Nosso (HGU?7, 32, %) 0.04 0.09
LOP (0.06, 0.3) 141.30 0.10
WLOP (0.07, 0.25) 10.52 0.10
RGN  APSS 4, 0.9 9.74 o.10
RIMLS 4,1 0.18 0.08
Nicolo Ours  (WPTUig, 8, 5) 0.05 0.09
(S| = 25239 LOP (0.04, 0.3) 71.31 o.11
WLOP (0.04, 0.25) 25.52 0.10
RGA  APSS 4, 0.75) 2.67 0.1
RIMLS 4, D 0.36 0.09
Nosso (PGU7, 16, 5) 0.22 0.09
LOP (0.07, 0.4) 13.92 0.26
WLOP (0.06, 0.4) 0.17 0.26
RGN APSS (3, 0.75) .55 0.22
RIMLS (4, 0.7%) 0.40 0.23
Femur Nosso (HTU7, 32, 5) 9.07 0.22
(S| = 8168) LOP (0.06, 0.3) 33.19 0.26
WLOP (0.06, 0.4) 7.84 0.26
RGA APSS G, D 0.98 0.23
RIMLS (3, 0.75) 0.60 0.21
Nosso (HTU7, 32, 5) 10.20 0.22
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Figura 5.5: Nosso método é capaz de preservar feicdes afiadas enquanto suaviza
as superficies. De esquerda a direita: modelo original e com ruido;

resultados usando [LOPB, [WLOBP, [APSS, RIMLSY e nosso método.

5.3 Preservacao de Feicoes Afiadas

Finalmente, realizamos uma comparagao qualitativa mostrando a eficcia de nossa
proposta para preservar feicoes afiadas. Na figura f.§ mostramos o resultado de
suavizar o modelo Fandisk usando os métodos LOP, WLOP, APSS, RIMLS e o
nosso. A cor mostra a distribui¢ao da curvatura. Podemos observar que nosso

método tem bons resultados, comparaveis com [RIMLS.

5.4 Modelos Reais

Além disso, testamos nosso método com modelos escaneados com ruido do scan-
ner. Na figura f.§ mostramos o resultado de suavizar o modelo Busto. No modelo
Busto, utilizamos os seguintes parimetros PGU?7 com cinco iteragoes no passo
de filtragem de normais e 7 iteragdes no passo de atualizacdo de pontos. Obser-

vamos que nosso método consegue preservar fei¢des de forma bastante rasoavel.
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Figura 5.6: Suavizagao de um modelo real escaneado.
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Capitulo
Conclusoes

Neste capitulo s3o apresentadas as principais contribui¢bes desta dissertacio no
contexto de suavizacao de superficies representadas por nuvens de pontos, bem
como algumas de suas limitagdes. Além disso, sao apresentadas algumas ideias

para trabalhos futuros no sentido de dar continuidade a abordagem proposta.

6.1 Contribuicoes

As principais contribui¢oes deste trabalho de mestrado podem ser sucintamente

sumarizadas tal como segue.

* Mostramos que a abordagem de dois passos (filtragem de normais/atuali-
za¢do dos pontos) para suavizar superficies, comumente empregada no con-
texto de malhas, pode ser estendida para o contexto de nuvens de pontos.
Nossa abordagem realiza um passo prévio para estimar as normais, e para
os passos de estimagao e atualizagao de normais, utiliza e compara técnicas

existentes.

* Baseado em métodos para atualizar vértices no contexto de malhas, propo-
mos um método para atualizar os pontos que leva em conta a vizinhanca de

cada ponto. A influéncia de cada normal na vizinhanc¢a é dada por um peso
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(b) Modelo Pelvis com ruido
(a) Modelo Pelvis original Gaussiano aleatorio (c) Modelo Pelvis suavizado

Figura 6.1: Um inconveniente com o ponto conjunto de superficies é determinar
a relacao de vizinhanca de pontos em superficies com folhas proximas.

bilateral que leva em conta, além da distincia entre os pontos, a distincia

entre as normais.

* Realizamos um conjunto de experimentos abrangente, variando o nimero
de vizinhos e o nimero de iteracoes em cada passo do pipeline. Os experi-
mentos mostram que os parametros utilizados podem influenciar conside-

ravelmente a qualidade do processo de suavizagio.

* Finalmente, realizamos comparac¢6es com métodos do estado da arte mos-
trando que o esquema de filtragem de normais/atualizac¢ao de pontos tem
um desempenho superior a métodos existentes, sendo bastante competi-
tivo e uma boa alternativa para suavizacio de superficies baseadas em pon-

tos.

6.2 Limitacoes

Como a maioria de métodos prévios de suavizagao de superficies baseados em
vizinhangas, nosso método nio tem bom desempenho em presenca de superficies
com folhas paralelas proximas, como pode ser visto na Figura [6.1.

Uma possivel solugao a esse problema ¢é usar algum algoritmo para orientar
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6.3 Trabalbos Futuros

normais, como o proposto por Hoppe et all (1992), apds o passo de estimaciao
de normais. Assim, no passo de filtragem de normais as normais seriam mais
precisas e no passo de atualiza¢ao dos pontos, normais com orienta¢ao oposta

nio influenciariam a nova posi¢ao dos pontos.

6.3 Trabalhos Futuros

Ap6s a pesquisa, desenvolvimento e avaliagdo dessa técnica de suavizagao, algu-
mas ideias foram propostas no sentido de consolidar a base para trabalhos futu-
ros. Dentre elas destaca-se a utiliza¢ao de um quadro teérico proposto por Mitra
et al] 2oo4) para realizar um estudo mais profundo dos raios de vizinhang¢a no
passo de estimagao de normais. Além disso, uma analise com diferentes distri-
bui¢oes de ruido é um estudo util, principalmente fazendo uso de um benchmark

como o proposto em Berger et al] (2o13).
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