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Duas Etapas em Nuvens de Pontos?

Correção de Normais Filtragem da Superfcie
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Duas Etapas em Nuvens de Pontos?

Normal em malhas:
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I Não é direto

I Estimativas são necessárias
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Estimativa de Normais

MLS

PCA

WPCA

RHT

Voronoi

Kernel de Densidade

Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 11



Duas Etapas em Nuvens de Pontos?

Normal em nuvens de pontos:
normal definida por cada ponto

I Não é direto
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Duas Etapas em Nuvens de Pontos?

Atualização de vértices em malhas: ortogonalidade entre a normal
e as arestas de cada face.

x2 − x1

x1 − x3

x3 − x2

nf 
nf · (xi − xj) = 0

nf · (xk − xj) = 0

nf · (xi − xk) = 0

∀f = (i , j , k)
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Duas Etapas em Nuvens de Pontos?

Atualização de pontos em nuvens de pontos?
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Objetivos

Principal

Investigar uma metodologia de duas etapas para filtrar nuvens de
pontos.
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Objetivos

Espećıficos

I Investigar alternativas para cada etapa do proceso;

I Analisar a eficácia de cada combinação.
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Objetivos

Espećıficos

I Definir um método para atualizar os pontos;

I Realizar um conjunto de comparações qualitativas e
quantitativas com técnicas de suavização de nuvens de pontos.
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Técnicas de Projeção

A. C. Öztireli, G. Guennebaud & M. Gross / Feature Preserving PSS

input poisson APSS IMLS RIMLS

Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%

input SPSS APSS

IMLS RIMLS (1 iter) RIMLS (2 iters)

Figure 7: Reconstruction of sharp features for the difficult
case of four intersecting planes.

of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.

c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.
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c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.

Suavização de nuvens de pontos usando técnicas de projeção (Extráıdo
de Öztireli et al. 2009)

I APSS (Algebraic Point Set Surfaces)

I RIMLS (Robust Implicit Moving Least Squares)

Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 21



Técnicas de Projeção

A. C. Öztireli, G. Guennebaud & M. Gross / Feature Preserving PSS

input poisson APSS IMLS RIMLS

Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%

input SPSS APSS

IMLS RIMLS (1 iter) RIMLS (2 iters)

Figure 7: Reconstruction of sharp features for the difficult
case of four intersecting planes.

of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.

c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.

A. C. Öztireli, G. Guennebaud & M. Gross / Feature Preserving PSS

input poisson APSS IMLS RIMLS

Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%

input SPSS APSS

IMLS RIMLS (1 iter) RIMLS (2 iters)

Figure 7: Reconstruction of sharp features for the difficult
case of four intersecting planes.

of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.
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Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%
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of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.
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Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%
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Figure 7: Reconstruction of sharp features for the difficult
case of four intersecting planes.

of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.
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Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%
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case of four intersecting planes.

of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.

c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.

A. C. Öztireli, G. Guennebaud & M. Gross / Feature Preserving PSS

input poisson APSS IMLS RIMLS

Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object
size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AA03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%
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of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBH06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease sn to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for sn = 0.33. In fact, when sn ! 0, all samples become
outliers of the other leading to a C�1 surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for sn > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.
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Projeção Localmente Ótima (LOP)

Seja uma nuvem de pontos P e um conjunto arbitrario X ,
encontrar:

Q = G (Q) ,

I Representar a geometŕıa localmente;

I Os pontos qj não estejam muito próximos entre si.
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I Representar a geometŕıa localmente;
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Projeção Localmente Ótima Ponderada (WLOP)

Adiciona pesos de densidade em cada termo de G (C ):

I Um peso para relaxar a formação de clusters em E1.

I Um peso para fortalecer a repulsão em areas densas em E2.
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Projeção Localmente Ótima Ponderada (WLOP)

Adiciona pesos de densidade em cada termo de G (C ):

I Um peso para relaxar a formação de clusters em E1.

I Um peso para fortalecer a repulsão em areas densas em E2.

G (C ) = arg min
x∈{xj}

{ E1(X ,P,C ) + E2(X ,C ) }

Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 24



Projeção Localmente Ótima Ponderada (WLOP)
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Análise de Componentes Principais (PCA)
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Análise de Componentes Principais Ponderada (WPCA)
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Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 29



Análise de Componentes Principais Ponderada (WPCA)

pi

CP1

CP2
Ci = XWX>

Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 29



Análise de Componentes Principais Ponderada (WPCA)

pi

ni

CP1

CP2

Ci = XWX>

Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 29



Análise de Componentes Principais Ponderada (WPCA)

pi

ni

CP1

CP2

Ci = XWX>

Paola L Valdivia Correção de Normais para Filtragem de Nuvens de Pontos 29



RHT

I Selecionar T tŕıadas de pontos na
vizinhança de pi

I Cada tŕıada, define um plano (e
uma normal com origem em pi )

I Cada esfera é discretizada em bins

I Em 3D, a transformada da normal
para o espaço de Hough esta dada
pelos ángulos θ e φ

I O espaço e discretizado usando o
acumulador de Borrman.
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RHT

I Selecionar T tŕıadas de pontos na
vizinhança de pi

I Cada tŕıada, define um plano (e
uma normal com origem em pi )

I Cada esfera é discretizada em bins

I Em 3D, a transformada da normal
para o espaço de Hough esta dada
pelos ángulos θ e φ

I O espaço e discretizado usando o
acumulador de Borrman.

pi

Normais mapeadas na esfera
unitaria
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RHT

I Selecionar T tŕıadas de pontos na
vizinhança de pi

I Cada tŕıada, define um plano (e
uma normal com origem em pi )

I Cada esfera é discretizada em bins

I Em 3D, a transformada da normal
para o espaço de Hough esta dada
pelos ángulos θ e φ

I O espaço e discretizado usando o
acumulador de Borrman.

pi

Normais mapeadas em um
acumulador 2D
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RHT

I Selecionar T tŕıadas de pontos na
vizinhança de pi

I Cada tŕıada, define um plano (e
uma normal com origem em pi )

I Cada esfera é discretizada em bins

I Em 3D, a transformada da normal
para o espaço de Hough esta dada
pelos ángulos θ e φ

I O espaço e discretizado usando o
acumulador de Borrman.
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θ

Transformada de Hough para
um vetor.
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RHT

I Selecionar T tŕıadas de pontos na
vizinhança de pi

I Cada tŕıada, define um plano (e
uma normal com origem em pi )

I Cada esfera é discretizada em bins

I Em 3D, a transformada da normal
para o espaço de Hough esta dada
pelos ángulos θ e φ

I O espaço e discretizado usando o
acumulador de Borrman.

Accumulator

Our primitives are planes direc-
tions (defined by two angles).
We use the accumulator of
Borrmann & al (3D Research,
2011).

! Fast computing
! Bins of similar area

11/37

Acumulador esférico de
Borrman (extráıdo de Boulch

& Marlet, 2012).
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Pesos Limiarizados
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Peso Bilateral-Gaussiano

wj = Wc(||pi − pj ||)Ws(||ni − nj ||) ,

Wc(x) = exp(−x2/2σ2
c ), Ws(x) = exp(−x2/2σ2

s ) ,
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Peso Bilateral-Gaussiano
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Peso Bilateral-Misto

wj = Wc(||pi − pj ||)Φs(ni ,nj) ,

Φs(ni ,nj) =

{
0 , se (ni − nj) · ni ≥ T

((ni − nj) · ni − T )2 , caso contrário

Wc(x) = exp(−x2/2σ2
c ) ,
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Peso Bilateral-Misto
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de Normais

Correção

de Normais

Filtragem

da Superfcie

PCA

WPCA

RHT

Pesos Limiarizados

Bilateral Gaussiano

Bilateral Misto

Atualização

dos Pontos
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Filtragem da Superf́ıcie

pl
i = pl−1

i +
1∑

j∈Ni
wj

∑
j∈Ni

n′j(wjn
′
j ·(pl−1

j −pl−1
i )) ,

wj = Wc(||pi−pj ||)Ws(1−(ni .nj)) ,
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Modelos

Double Torus
|S | = 4350

Elephant
|S | = 24955

Nicolo
|S | = 25239

Femur
|S | = 8168

Fandisk
|S | = 25894
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Rúıdo

Rúıdo sintético com σ = 0.2(longitude media das arestas).

I Rúıdo Gaussiano na direção normal (RGN)

I Rúıdo Gaussiano em direção aleatória (RGA)
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Combinações

PCA

WPCA

RHT

Peso Limi-
arizados

Bilateral
Gaussiano

Bilateral
Misto

Atualização
dos Pontos

×3 ×3

×3 ×3

×3 ×3
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Métricas

Usamos a correspondência um-a-um entre os pontos na superf́ıcie
original M e na superf́ıcie filtrada S.

I Ek : média das diferenças da curvatura em cada ponto pi em
M e S.

I EA: diferença da area de M e S.
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Desempenho das Alternativas (Elephant + RGN)
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Desempenho das Alternativas (Elephant + RGN)
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Desempenho das Alternativas (Elephant + RGA)
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Desempenho das Alternativas (Elephant + RGA)
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Erro médio de Cada Alternativa
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Area × Curvatura (Double Torus + RGA)
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Area × Curvatura (Double Torus + RGA)
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Area × Curvatura (Double Torus + RGA)
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Area × Curvatura (Double Torus + RGA)
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Area × Curvatura (Double Torus + RGA)
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Area × Curvatura (Double Torus + RGA)
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Area × Curvatura (Double Torus + RGA)
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Double Torus

Original Rúıdo LOP WLOP

APSS RIMLS Nosso
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Melhores Conjuntos de Parametros e Erros

Modelo Rúıdo Método Parâmetros EA ×10−3 Ek ×10−3

RGN

LOP (0.14, 0.3) 53.62 0.78
WLOP (0.12, 0.3) 26.45 0.72
APSS (3, 0.5) 5.59 0.49

RIMLS (5, 0.5) 4.24 0.24
Nosso (PTU7, 32, 5) 0.59 0.31

RGA

LOP (0.9, 0.4) 95.68 0.45
(|S | = 4350) WLOP (0.12, 0.3) 59.42 0.72

APSS (3, 0.5) 23.16 0.54
RIMLS (3, 0.5) 12.39 0.31
Nosso (WPTU21, 4, 5) 0.22 0.34
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Elephant

Original Rúıdo LOP WLOP

APSS RIMLS Nosso
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Melhores Conjuntos de Parametros e Erros

Modelo Rúıdo Método Parâmetros EA ×10−3 Ek ×10−3

RGN

LOP (0.07, 0.4) 11.86 0.18
WLOP (0.05, 0.5) 5.64 0.24
APSS (3, 0.75) 0.70 0.12

RIMLS (4, 1) 6.59 0.14
Nosso (PGU21, 32, 5) 0.24 0.24

RGA

LOP (0.05, 0.4) 42.14 0.15
WLOP (0.03, 0.4) 38.87 0.13

(|S | = 24955) APSS (2, 1) 1.57 0.09
RIMLS (2, 0.75) 1.58 0.08
Nosso (HG21, 32, 5) 0.04 0.22
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Nicolo

Original Rúıdo LOP WLOP

APSS RIMLS Nosso
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Melhores Conjuntos de Parametros e Erros

Modelo Rúıdo Método Parâmetros EA ×10−3 Ek ×10−3

RGN

LOP (0.06, 0.3) 141.30 0.10
WLOP (0.07, 0.25) 10.52 0.10
APSS (4, 0.5) 9.74 0.10

RIMLS (4, 1) 0.18 0.08
Nosso (WPTU15, 8, 5) 0.05 0.09

RGA

LOP (0.04, 0.3) 71.31 0.11
WLOP (0.04, 0.25) 25.52 0.10

(|S | = 25239) APSS (4, 0.75) 2.67 0.11
RIMLS (4, 1) 0.36 0.09
Nosso (PGU7, 16, 5) 0.22 0.09
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Femur

Original Rúıdo LOP WLOP

APSS RIMLS Nosso
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Melhores Conjuntos de Parametros e Erros

Modelo Rúıdo Método Parâmetros EA ×10−3 Ek ×10−3

RGN

LOP (0.07, 0.4) 13.92 0.26
WLOP (0.06, 0.4) 0.17 0.26
APSS (3, 0.75) 1.55 0.22

RIMLS (4, 0.75) 0.40 0.23
Nosso (HTU7, 32, 5) 9.07 0.22

RGA

LOP (0.06, 0.3) 33.19 0.26
WLOP (0.06, 0.4) 7.84 0.26

(|S | = 8168) APSS (3, 1) 0.98 0.23
RIMLS (3, 0.75) 0.60 0.21
Nosso (HTU7, 32, 5) 10.20 0.22
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Preservação de Feições

Original Rúıdo LOP WLOP

APSS RIMLS Nosso
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Melhores Conjuntos de Parametros e Erros

Modelo Rúıdo Método Parâmetros EA ×10−3 Ek ×10−3

RGN

LOP (0.08, 0.3) 1.22 0.21
WLOP (0.07, 0.35) 37.36 0.20
APSS (2, 1) 5.76 0.10

RIMLS (4, 0.5) 0.59 0.05
Nosso (HTU21, 16, 5) 0.02 0.08

RGA

LOP (0.07, 0.35) 21.82 0.20
WLOP (0.07, 0.35) 35.21 0.20

(|S | = 25894) APSS (2, 1) 0.58 0.08
RIMLS (4, 0.75) 1.13 0.08
Nosso (HGU7, 32, 5) 0.04 0.09
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Contribuições

I A abordagem de dois passos pode ser estendida para o
contexto de nuvens de pontos.

I Esquema bilateral para atualizar os pontos: distância entre os
pontos e distância entre as normais.

I Conjunto de experimentos abrangente (variando número de
vizinhos e número de iterações). Os parâmetros utilizados
podem influenciar consideravelmente a qualidade do processo
de suavização.

I Comparações com métodos do estado da arte. O esquema de
filtragem de normais/atualização de pontos tem um
desempenho superior a métodos existentes.
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Limitações

Original Rúıdo Suavizado

Relação de vizinhança de pontos em superf́ıcies com folhas próximas?
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Trabalhos Futuros

I Quadro teórico, como o proposto em Mitra et al. (2004), para
realizar um estudo mais profundo dos raios de vizinhança no
passo de estimativa de normais.

I Além disso, uma análise com diferentes distribuições de rúıdo
é um estudo útil, principalmente fazendo uso de um
benchmark como o proposto em Berger et al. (2013).
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